搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种强噪声背景下微弱超声信号提取方法研究

王大为 王召巴

引用本文:
Citation:

一种强噪声背景下微弱超声信号提取方法研究

王大为, 王召巴

Weak ultrasonic signal detection in strong noise

Wang Da-Wei1\2, Wang Zhao-Ba
PDF
导出引用
  • 为解决在强噪声背景下获取超声信号的难题,基于粒子群优化算法和稀疏分解理论提出一种强噪声背景下微弱超声信号提取方法.该方法将降噪问题转换为在无穷大参数集上对函数进行优化的问题,首先以稀疏分解理论和超声信号的结构特点为依据构建了粒子群优化算法运行所需要的目标函数及去噪后信号的重构函数,从而将粒子群优化算法和超声信号降噪联系在一起;然后根据粒子群优化算法可以在连续参数空间寻优的特点建立了用于匹配超声信号的连续超完备字典,并采用改进的自适应粒子群优化算法在该字典中对目标函数进行优化;最后根据对目标函数在字典上的优化结果确定最优原子,并利用最优原子按照重构函数重构出降噪后的超声信号.通过对仿真超声信号和实测超声信号的处理,结果表明本文提出的方法可以有效提取信噪比低至-4 dB的强噪声背景下的微弱超声信号,且和基于自适应阈值的小波方法相比本文方法表现出更好的降噪性能.
    In order to solve the problem of extracting ultrasonic signals from strong background noise, a novel method, which is termed APSO-SD algorithm and based on improved adaptive particle swarm optimization (APSO) and sparse decomposition (SD) theory, is proposed in this paper. This method can convert the ultrasonic signal denoising problem into optimizing the function on the infinite parameter set. First, based on the sparse decomposition theory and the structural characteristics of ultrasonic signal, the objective function of particle swarm optimization algorithm and the reconstruction algorithm of the denoised signal are constructed, so that particle swarm optimization and ultrasonic signal denoising can be combined. Second, in order to improve the robustness of the proposed approach, an APSO algorithm is proposed. What is more, because particle swarm optimization algorithm can be used to optimize in continuous parameter space, and according to the empirical characteristics of the ultrasonic signals used in practical engineering, a continuous super complete dictionary for matching ultrasonic signals is established. Since the super complete dictionary is continuous, there are an infinite number of atoms in the established dictionary. The redundancy of dictionaries is enhanced by the method in this paper. Based on the fact that the inner product of the optimal atom and the ultrasonic signal is one and the inner product of the noise and the optimal atom is zero in the established dictionary, the objective optimization function of APSO-SD algorithm is established. Finally, the optimal atom is determined based on the optimization result of the objective function. In this way, the denoising ultrasonic signal can be reconstructed by using the optimal atom according to the reconstruction algorithm. The processing results of simulated ultrasonic signals and measured ultrasonic signals show that the proposed method can effectively extract weak ultrasonic signals from strong background noise whose signal-to-noise ratio is lowest, as low as-4 dB. In addition, compared with the adaptive threshold based wavelet method, the proposed method in this paper shows the good denoising performance. In this paper, it is demonstrated that the problem of ultrasonic signal denoising can be transformed into the optimization of constraint functions. Furthermore, the ability of the proposed APSO-SD algorithm to accurately recover signals from noisy acoustic signals is better than that of the common wavelet method.
      通信作者: 王召巴, wangzb@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11604304)、山西省科技攻关项目(批准号:201603D121006-1)、山西省回国留学人员科研资助项目(批准号:2016-084)和山西省高等学校科技创新项目(批准号:201657)资助的课题.
      Corresponding author: Wang Zhao-Ba, wangzb@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604304), the Shanxi Province Science and Technology Tackling Key Project, China (Grant No. 201603D121006-1), the Shanxi Provincial Foundation for Returned Scholars, China (Grant No. 2016-084), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi, China (Grant No. 201657).
    [1]

    Kharrat M, Gaillet L 2015 Ultrasonics 61 52

    [2]

    Burkov M V, Eremin A V, Lyubutin P S, Byakov A V, Panin S V 2017 Russ. J. Nondestruct. 53 817

    [3]

    Demcenko A, Mainini L, Korneev V A 2015 Ultrasonics 57 179

    [4]

    Mcgovern M E, Reis H 2017 Res. Nondestruct Eval. 28 226

    [5]

    Li W, Cho Y 2014 Exp. Mech. 54 1309

    [6]

    Li W B, Deng M X, Xiang Y X 2017 Chin. Phys. B 26 114302

    [7]

    Demenko A, Koissin V, Korneev V A 2014 Ultrasonics 54 684

    [8]

    Jiang N 2015 Ph. D. Dissertation (Taiyuan: North University of China) (in Chinese)[江念 2015博士学位论文 (太原: 中北大学)]

    [9]

    Mohamed I, Hutchins D, Davis L, Laureti S, Ricci M 2017 Nondestruct. Test Eva. 32 343

    [10]

    Sinding K M, Drapaca C S, Tittmann B R 2016 IEEE Trans. Ultrason Ferr. 63 1172

    [11]

    Wu J, Zhu J G, Yang L H, Shen M T, Xue B, Liu Z X 2014 Measurement 47 433

    [12]

    San E, Rodriguez H 2015 J. Nondestruct Eval. 34 270

    [13]

    Li Y, Guo S X 2012 Acta Phys. Sin. 61 034208 (in Chinese)[李扬, 郭树旭 2012 物理学报 61 034208]

    [14]

    Mallat S G, Zhang Z 1993 IEEE Trans. Signal Process. 41 3397

    [15]

    Wang L, Cai G G, Gao G Q, Zhou F, Yang S Y, Zhu Z K 2017 J. Vib. Shock 36 176 (in Chinese)[王林, 蔡改改, 高冠琪, 周菲, 杨思远, 朱忠奎 2017 振动与冲击 36 176]

    [16]

    Zhao Z G, Zhang C J, Gou X F, Sang H T 2015 Acta Phys. Sin. 64 088801 (in Chinese)[赵志刚, 张纯杰, 苟向锋, 桑虎堂 2015 物理学报 64 088801]

    [17]

    Subasi A 2013 Comput. Biol. Med. 43 576

    [18]

    Cho M Y, Hoang T T 2017 Adv. Electr. Comput. En. 17 51

    [19]

    Gao F, Tong H Q 2006 Acta Phys. Sin. 55 577 (in Chinese)[高飞, 童恒庆 2006 物理学报 55 577]

    [20]

    Zhang H L, Song L L 2013 Acta Phys. Sin. 62 190508 (in Chinese)[张宏立, 宋莉莉 2013 物理学报 62 190508]

    [21]

    Armaghani D J, Shoib R S, Faizi K, Rashid A S 2017 Neural Comput. Appl. 28 391

    [22]

    Wei D Z, Chen F J, Zheng X Y 2015 Acta Phys. Sin. 64 110503 (in Chinese)[魏德志, 陈福集, 郑小雪 2015 物理学报 64 110503]

    [23]

    Yuan H D, Chen J, Dong G M 2017 Math. Probl. Eng. 2017 7257603

    [24]

    Ghasemi M, Aghaei J, Hadipour M 2017 Electron. Lett. 53 1360

    [25]

    Demirli R, Saniie J 2001 IEEE Trans. Ultrason. Ferr. 48 787

    [26]

    Zhu J J, Li X L 2017 Healthcare Technol. Lett. 4 134

    [27]

    Tang J, Gao L, Peng L, Zhou Q 2007 High Voltage Eng. 12 66 (in Chinese)[唐炬, 高丽, 彭莉, 周倩 2007 高电压技术 12 66]

  • [1]

    Kharrat M, Gaillet L 2015 Ultrasonics 61 52

    [2]

    Burkov M V, Eremin A V, Lyubutin P S, Byakov A V, Panin S V 2017 Russ. J. Nondestruct. 53 817

    [3]

    Demcenko A, Mainini L, Korneev V A 2015 Ultrasonics 57 179

    [4]

    Mcgovern M E, Reis H 2017 Res. Nondestruct Eval. 28 226

    [5]

    Li W, Cho Y 2014 Exp. Mech. 54 1309

    [6]

    Li W B, Deng M X, Xiang Y X 2017 Chin. Phys. B 26 114302

    [7]

    Demenko A, Koissin V, Korneev V A 2014 Ultrasonics 54 684

    [8]

    Jiang N 2015 Ph. D. Dissertation (Taiyuan: North University of China) (in Chinese)[江念 2015博士学位论文 (太原: 中北大学)]

    [9]

    Mohamed I, Hutchins D, Davis L, Laureti S, Ricci M 2017 Nondestruct. Test Eva. 32 343

    [10]

    Sinding K M, Drapaca C S, Tittmann B R 2016 IEEE Trans. Ultrason Ferr. 63 1172

    [11]

    Wu J, Zhu J G, Yang L H, Shen M T, Xue B, Liu Z X 2014 Measurement 47 433

    [12]

    San E, Rodriguez H 2015 J. Nondestruct Eval. 34 270

    [13]

    Li Y, Guo S X 2012 Acta Phys. Sin. 61 034208 (in Chinese)[李扬, 郭树旭 2012 物理学报 61 034208]

    [14]

    Mallat S G, Zhang Z 1993 IEEE Trans. Signal Process. 41 3397

    [15]

    Wang L, Cai G G, Gao G Q, Zhou F, Yang S Y, Zhu Z K 2017 J. Vib. Shock 36 176 (in Chinese)[王林, 蔡改改, 高冠琪, 周菲, 杨思远, 朱忠奎 2017 振动与冲击 36 176]

    [16]

    Zhao Z G, Zhang C J, Gou X F, Sang H T 2015 Acta Phys. Sin. 64 088801 (in Chinese)[赵志刚, 张纯杰, 苟向锋, 桑虎堂 2015 物理学报 64 088801]

    [17]

    Subasi A 2013 Comput. Biol. Med. 43 576

    [18]

    Cho M Y, Hoang T T 2017 Adv. Electr. Comput. En. 17 51

    [19]

    Gao F, Tong H Q 2006 Acta Phys. Sin. 55 577 (in Chinese)[高飞, 童恒庆 2006 物理学报 55 577]

    [20]

    Zhang H L, Song L L 2013 Acta Phys. Sin. 62 190508 (in Chinese)[张宏立, 宋莉莉 2013 物理学报 62 190508]

    [21]

    Armaghani D J, Shoib R S, Faizi K, Rashid A S 2017 Neural Comput. Appl. 28 391

    [22]

    Wei D Z, Chen F J, Zheng X Y 2015 Acta Phys. Sin. 64 110503 (in Chinese)[魏德志, 陈福集, 郑小雪 2015 物理学报 64 110503]

    [23]

    Yuan H D, Chen J, Dong G M 2017 Math. Probl. Eng. 2017 7257603

    [24]

    Ghasemi M, Aghaei J, Hadipour M 2017 Electron. Lett. 53 1360

    [25]

    Demirli R, Saniie J 2001 IEEE Trans. Ultrason. Ferr. 48 787

    [26]

    Zhu J J, Li X L 2017 Healthcare Technol. Lett. 4 134

    [27]

    Tang J, Gao L, Peng L, Zhou Q 2007 High Voltage Eng. 12 66 (in Chinese)[唐炬, 高丽, 彭莉, 周倩 2007 高电压技术 12 66]

  • [1] 狄苗, 何湘, 刘明智, 闫善善, 魏龙龙, 田野, 尹冠军, 郭建中. 共聚焦超声换能器的声场优化与粒子捕获. 物理学报, 2023, 72(1): 014301. doi: 10.7498/aps.72.20221547
    [2] 狄苗, 何湘, 刘明智, 闫善善, 魏龙龙, 田野, 尹冠军, 郭建中. 共聚焦超声换能器的声场优化与粒子捕获. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221547
    [3] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比. 物理学报, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [4] 王培良, 张婷, 肖英杰. 蚁群元胞优化算法在人群疏散路径规划中的应用. 物理学报, 2020, 69(8): 080504. doi: 10.7498/aps.69.20191774
    [5] 许子非, 岳敏楠, 李春. 优化递归变分模态分解及其在非线性信号处理中的应用. 物理学报, 2019, 68(23): 238401. doi: 10.7498/aps.68.20191005
    [6] 王大为, 王召巴, 陈友兴, 李海洋, 王浩坤. 基于双高斯衰减模型的超声回波处理方法. 物理学报, 2019, 68(8): 084303. doi: 10.7498/aps.68.20182080
    [7] 陈越, 刘雄英, 吴中堂, 范艺, 任子良, 冯久超. 受污染混沌信号的协同滤波降噪. 物理学报, 2017, 66(21): 210501. doi: 10.7498/aps.66.210501
    [8] 黄宇, 刘玉峰, 彭志敏, 丁艳军. 基于量子并行粒子群优化算法的分数阶混沌系统参数估计. 物理学报, 2015, 64(3): 030505. doi: 10.7498/aps.64.030505
    [9] 赵志刚, 张纯杰, 苟向锋, 桑虎堂. 基于粒子群优化支持向量机的太阳电池温度预测. 物理学报, 2015, 64(8): 088801. doi: 10.7498/aps.64.088801
    [10] 徐念喜, 高劲松, 冯晓国. 基于离散粒子群算法的频率选择表面优化设计研究. 物理学报, 2014, 63(13): 138401. doi: 10.7498/aps.63.138401
    [11] 陈颖, 王文跃, 于娜. 粒子群算法优化异质结构光子晶体环形腔滤波特性. 物理学报, 2014, 63(3): 034205. doi: 10.7498/aps.63.034205
    [12] 王小飞, 曲建岭, 高峰, 周玉平, 张翔宇. 基于噪声辅助非均匀采样复数据经验模态分解的混沌信号降噪. 物理学报, 2014, 63(17): 170203. doi: 10.7498/aps.63.170203
    [13] 刘福才, 贾亚飞, 任丽娜. 基于混沌粒子群优化算法的异结构混沌反同步自抗扰控制. 物理学报, 2013, 62(12): 120509. doi: 10.7498/aps.62.120509
    [14] 王文波, 张晓东, 汪祥莉. 基于独立成分分析和经验模态分解的混沌信号降噪. 物理学报, 2013, 62(5): 050201. doi: 10.7498/aps.62.050201
    [15] 郭业才, 胡苓苓, 丁锐. 基于量子粒子群优化的正交小波加权多模盲均衡算法. 物理学报, 2012, 61(5): 054304. doi: 10.7498/aps.61.054304
    [16] 李扬, 郭树旭. 基于稀疏分解的大功率半导体激光器1/f噪声参数估计的新方法. 物理学报, 2012, 61(3): 034208. doi: 10.7498/aps.61.034208
    [17] 李盼池, 王海英, 宋考平, 杨二龙. 量子势阱粒子群优化算法的改进研究. 物理学报, 2012, 61(6): 060302. doi: 10.7498/aps.61.060302
    [18] 方伟, 孙俊, 谢振平, 须文波. 量子粒子群优化算法的收敛性分析及控制参数研究. 物理学报, 2010, 59(6): 3686-3694. doi: 10.7498/aps.59.3686
    [19] 高 飞, 童恒庆. 基于改进粒子群优化算法的混沌系统参数估计方法. 物理学报, 2006, 55(2): 577-582. doi: 10.7498/aps.55.577
    [20] 王东风, 韩 璞. 基于粒子群优化的混沌系统比例-积分-微分控制. 物理学报, 2006, 55(4): 1644-1650. doi: 10.7498/aps.55.1644
计量
  • 文章访问数:  6906
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-24
  • 修回日期:  2018-06-22
  • 刊出日期:  2018-11-05

/

返回文章
返回