搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分块稀疏信号1-bit压缩感知重建方法

丰卉 孙彪 马书根

引用本文:
Citation:

分块稀疏信号1-bit压缩感知重建方法

丰卉, 孙彪, 马书根

One-bit compressed sensing reconstruction for block sparse signals

Feng Hui, Sun Biao, Ma Shu-Gen
PDF
导出引用
  • 1-bit压缩感知理论指出:对稀疏信号进行少量线性投影并对投影信号进行1-bit量化,该1-bit信号包含足够的信息,从而能对原始信号进行高精度重建.然而,当信号难以进行稀疏表达时,传统1-bit压缩感知算法无法精确重建原始信号.前期研究表明,分块稀疏模型作为一种特殊的结构型稀疏模型,对于难以用传统稀疏模型进行表达的信号具有较好的表达作用.本文提出了一种针对分块稀疏信号的1-bit压缩感知重建方法,该方法利用分块稀疏的统计特性对信号进行数学建模,通过变分贝叶斯推断方法进行信号重建并在光电容积脉搏波(photoplethysmography)信号上进行了实验验证.实验结果表明,与现有1-bit压缩感知重建方法相比,本文方法重建精度更高,且收敛速度更快.
    Data compression is crucial for resource-constrained signal acquisition and wireless transmission applications with limited data bandwidth. In such applications, wireless data transmission dominates the energy consumption, and the limited telemetry bandwidth could be overwhelmed by the large amount of data generated from multiple sensors. Conventional data compression techniques are computationally intensive, consume large silicon area and offset the energy benefits from reduced data transmission. Recently, compressed sensing (CS) has shown potential in achieving compression performance comparable to previous methods but it has simpler hardware. Especially, one-bit CS theory proves that the signs of compressed measurements contain sufficient information about signal reconstruction, gives that the signals are sparse or compressible in specific dictionaries, thus demonstrating its potential in energy-constrained signal recording and wireless transmission applications. However, the sparsity assumption is too restrictive in many actual scenarios, especially when it is difficult to seek sparse representation for signals. In this paper, a novel one-bit CS method is proposed to reconstruct the signals that are difficult to represent with traditional sparse models. It is capable of recovering signal with comparable compression ratio but avoiding the dictionary selection procedure.The proposed method consists of two parts. 1) The block sparse model is adopted to enforce the structured sparsity of the signals. It not only overcomes the drawbacks of conventional sparse models but also enhances the signal representation accuracy. 2) The probabilistic model of one-bit CS procedure is constructed. Because of the existence of logistic function in probabilistic model of one-bit CS, the Bayesian inference cannot be used to proceed, and the variational Bayesian inference algorithm is developed to reconstruct the original signals from one-bit measurements.Various experiments on different quantities of compressed measurements and iterations are carried out to evaluate the recovery performance of the proposed approach. The photoplethysmography (PPG) signals recorded from subject wrist (dorsal locations) by using PPG sensors built in a wristband are selected as the validation data because they are difficult to represent with traditional sparse dictionaries. The experimental results reveal that the proposed approach outperforms the state-of-the-art one-bit CS method in terms of both reconstruction accuracy and convergence rate.Compared with prior method on one-bit CS, the proposed method shows competitive or superior performance in three aspects. Firstly, by adopting the block sparse model, the proposed method improves the capability to compress signals that are difficult to represent with traditional sparse models, thus making it more practical for long term and real applications. Secondly, by embedding the statistical properties of the one-bit measurements into the recovery algorithm, the proposed method outperforms other one-bit CS methods in terms of both reconstruction performance and convergence speed. Finally, energy and computational efficiency of the proposed method make it an ideal candidate for resource-constrained, large scale, multiple channel signal acquisition and transmission applications.
      通信作者: 孙彪, sunbiao@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61401303,51578189)资助的课题.
      Corresponding author: Sun Biao, sunbiao@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61401303, 51578189).
    [1]

    Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289

    [2]

    Candes E J, Romberg J, Tao T 2006 IEEE Trans. Inf. Theory 52 489

    [3]

    Zhang J C, Fu N, Qiao L Y, Peng X Y 2014 Acta Phys. Sin. 63 030701(in Chinese)[张京超, 付宁, 乔立岩, 彭喜元2014物理学报 63 030701]

    [4]

    Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201(in Chinese)[李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰2014物理学报 63 224201]

    [5]

    Li S D, Chen W F, Yang J, Ma X Y 2016 Acta Phys. Sin. 65 038401(in Chinese)[李少东, 陈文峰, 杨军, 马晓岩2016物理学报 65 038401]

    [6]

    Li S D, Chen Y B, Liu R H, Ma X Y 2017 Acta Phys. Sin. 66 038401(in Chinese)[李少东, 陈永彬, 刘润华, 马晓岩2017物理学报 66 038401]

    [7]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212(in Chinese)[宁方立, 何碧静, 韦娟2013物理学报 62 174212]

    [8]

    Sun B, Zhao W F, Zhu X S 2017 J. Neural Eng. 14 036018

    [9]

    Sun B, Feng H, Chen K F, Zhu X S 2016 IEEE Access 4 5169

    [10]

    Sun B, Feng H 2017 IEEE Signal Process. Lett. 24 863

    [11]

    Sun B, Ni Y M 2017 IEEE Commun. Lett. 21 1775

    [12]

    Boufounos P T, Baraniuk R G 2008 Proceedings of the 42nd Annual Conference Information Sciences and Systems Princeton, USA, March 19-21, 2008 p16

    [13]

    Sun B, Jiang J J 2011 Acta Phys. Sin. 60 110701(in Chinese)[孙彪, 江建军2011物理学报 60 110701]

    [14]

    Boufounos P T 2009 Proceedings of the 43rd Asilomar Conference Signals, Systems and Computers Pacific Grove, USA, November 1-4, 2009 p1305

    [15]

    Jacques L, Laska J N, Boufounos P T, Baraniuk R G 2013 IEEE Trans. Inf. Theory 59 2082

    [16]

    Yang Z, Xie L, Zhang C 2013 IEEE Trans. Signal Process. 61 2815

    [17]

    Meng Q H, Li F 2006 Robot 28 89(in Chinese)[孟庆浩, 李飞2006机器人 28 89]

    [18]

    Cao M L, Meng Q H, Zeng M, Sun B, Li W, Ding C J 2014 Sensors 14 11444

    [19]

    Zhang Z, Jung T P, Makeig S, Rao B 2013 IEEE Trans. Biomed. Eng. 60 221

    [20]

    Zhang Z L 2014 Proceedings of IEEE Global Conference on Signal and Information Processing Atlanta, USA, December 3-5, 2014 p698

    [21]

    Zhang Z L, Rao B 2013 IEEE Trans. Signal Process. 61 2009

    [22]

    Tipping M 2001 J. Mach. Learn. Res. 1 211

    [23]

    Tzikas D G, Likas A C, Galatsanos N P 2008 IEEE Signal Process. Mag. 25 131

    [24]

    Bishop C M, Tipping M E 2000 Proceedings of the 16th Conference Uncertainty in Artificial Intelligence San Francisco, USA, June 30-July 3, 2000 p46

    [25]

    Sun B, Feng H, Zhang Z L 2016 Proceedings of the 41st IEEE International Conference on Acoustics, Speech, and Signal Processing Shanghai, China, March 20-25, 2016 p809

    [26]

    Sun B, Zhang Z L 2015 IEEE Sens. J. 15 7161

    [27]

    Li F, Fang J, Li H, Huang L 2015 IEEE Signal Process. Lett. 22 857

  • [1]

    Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289

    [2]

    Candes E J, Romberg J, Tao T 2006 IEEE Trans. Inf. Theory 52 489

    [3]

    Zhang J C, Fu N, Qiao L Y, Peng X Y 2014 Acta Phys. Sin. 63 030701(in Chinese)[张京超, 付宁, 乔立岩, 彭喜元2014物理学报 63 030701]

    [4]

    Li L Z, Yao X R, Liu X F, Yu W K, Zhai G J 2014 Acta Phys. Sin. 63 224201(in Chinese)[李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰2014物理学报 63 224201]

    [5]

    Li S D, Chen W F, Yang J, Ma X Y 2016 Acta Phys. Sin. 65 038401(in Chinese)[李少东, 陈文峰, 杨军, 马晓岩2016物理学报 65 038401]

    [6]

    Li S D, Chen Y B, Liu R H, Ma X Y 2017 Acta Phys. Sin. 66 038401(in Chinese)[李少东, 陈永彬, 刘润华, 马晓岩2017物理学报 66 038401]

    [7]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212(in Chinese)[宁方立, 何碧静, 韦娟2013物理学报 62 174212]

    [8]

    Sun B, Zhao W F, Zhu X S 2017 J. Neural Eng. 14 036018

    [9]

    Sun B, Feng H, Chen K F, Zhu X S 2016 IEEE Access 4 5169

    [10]

    Sun B, Feng H 2017 IEEE Signal Process. Lett. 24 863

    [11]

    Sun B, Ni Y M 2017 IEEE Commun. Lett. 21 1775

    [12]

    Boufounos P T, Baraniuk R G 2008 Proceedings of the 42nd Annual Conference Information Sciences and Systems Princeton, USA, March 19-21, 2008 p16

    [13]

    Sun B, Jiang J J 2011 Acta Phys. Sin. 60 110701(in Chinese)[孙彪, 江建军2011物理学报 60 110701]

    [14]

    Boufounos P T 2009 Proceedings of the 43rd Asilomar Conference Signals, Systems and Computers Pacific Grove, USA, November 1-4, 2009 p1305

    [15]

    Jacques L, Laska J N, Boufounos P T, Baraniuk R G 2013 IEEE Trans. Inf. Theory 59 2082

    [16]

    Yang Z, Xie L, Zhang C 2013 IEEE Trans. Signal Process. 61 2815

    [17]

    Meng Q H, Li F 2006 Robot 28 89(in Chinese)[孟庆浩, 李飞2006机器人 28 89]

    [18]

    Cao M L, Meng Q H, Zeng M, Sun B, Li W, Ding C J 2014 Sensors 14 11444

    [19]

    Zhang Z, Jung T P, Makeig S, Rao B 2013 IEEE Trans. Biomed. Eng. 60 221

    [20]

    Zhang Z L 2014 Proceedings of IEEE Global Conference on Signal and Information Processing Atlanta, USA, December 3-5, 2014 p698

    [21]

    Zhang Z L, Rao B 2013 IEEE Trans. Signal Process. 61 2009

    [22]

    Tipping M 2001 J. Mach. Learn. Res. 1 211

    [23]

    Tzikas D G, Likas A C, Galatsanos N P 2008 IEEE Signal Process. Mag. 25 131

    [24]

    Bishop C M, Tipping M E 2000 Proceedings of the 16th Conference Uncertainty in Artificial Intelligence San Francisco, USA, June 30-July 3, 2000 p46

    [25]

    Sun B, Feng H, Zhang Z L 2016 Proceedings of the 41st IEEE International Conference on Acoustics, Speech, and Signal Processing Shanghai, China, March 20-25, 2016 p809

    [26]

    Sun B, Zhang Z L 2015 IEEE Sens. J. 15 7161

    [27]

    Li F, Fang J, Li H, Huang L 2015 IEEE Signal Process. Lett. 22 857

  • [1] 韩彦睿, 李伟, 臧延华, 杨昌钢, 陈瑞云, 张国峰, 秦成兵, 胡建勇, 肖连团. 基于量子压缩感知的宽带射频信号测量. 物理学报, 2023, 72(16): 160301. doi: 10.7498/aps.72.20230398
    [2] 崔岸婧, 李道京, 吴疆, 周凯, 高敬涵. 频域稀疏采样和激光成像方法. 物理学报, 2022, 71(5): 058705. doi: 10.7498/aps.71.20211408
    [3] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比. 物理学报, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [4] 汪韧, 郭静波, 惠俊鹏, 王泽, 刘红军, 许元男, 刘韵佛. 基于卷积高斯混合模型的统计压缩感知. 物理学报, 2019, 68(18): 180701. doi: 10.7498/aps.68.20190414
    [5] 蒋川东, 常星, 孙佳, 李天威, 田宝凤. 基于L1范数的低场核磁共振T2谱稀疏反演方法. 物理学报, 2017, 66(4): 047601. doi: 10.7498/aps.66.047601
    [6] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法. 物理学报, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [7] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [8] 李慧, 赵琳, 李亮. 基于贝叶斯压缩感知的周跳探测与修复方法. 物理学报, 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [9] 文方青, 张弓, 陶宇, 刘苏, 冯俊杰. 面向低信噪比的自适应压缩感知方法. 物理学报, 2015, 64(8): 084301. doi: 10.7498/aps.64.084301
    [10] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [11] 文方青, 张弓, 贲德. 基于块稀疏贝叶斯学习的多任务压缩感知重构算法. 物理学报, 2015, 64(7): 070201. doi: 10.7498/aps.64.070201
    [12] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [13] 王哲, 王秉中. 压缩感知理论在矩量法中的应用. 物理学报, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [14] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [15] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [16] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [17] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [18] 李扬, 郭树旭. 基于稀疏分解的大功率半导体激光器1/f噪声参数估计的新方法. 物理学报, 2012, 61(3): 034208. doi: 10.7498/aps.61.034208
    [19] 郝崇清, 王江, 邓斌, 魏熙乐. 基于稀疏贝叶斯学习的复杂网络拓扑估计. 物理学报, 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [20] 郑兆勃. 无限次微扰理论的分块矩阵法证明. 物理学报, 1981, 30(7): 866-877. doi: 10.7498/aps.30.866
计量
  • 文章访问数:  6501
  • PDF下载量:  324
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-14
  • 修回日期:  2017-05-15
  • 刊出日期:  2017-09-05

/

返回文章
返回