搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

优化递归变分模态分解及其在非线性信号处理中的应用

许子非 岳敏楠 李春

引用本文:
Citation:

优化递归变分模态分解及其在非线性信号处理中的应用

许子非, 岳敏楠, 李春

Application of the proposed optimized recursive variational mode decomposition in nonlinear decomposition

Xu Zi-Fei, Yue Min-Nan, Li Chun
PDF
HTML
导出引用
  • 经验模态分解一类的递归算法所产生的模态混淆和端点效应将导致所获物理信息失真, 变分模态分解可改善这些问题. 但因其需预设参数, 对信号分解精度影响显著, 为此, 提出采用目标信号功率谱峰值所对应的频率以初始化变分模态分解所需中心频率, 借鉴经验模态分解递归模型, 基于能量截止法将变分模态分解改进为递归模式算法, 并采用粒子群优化算法对具有带宽约束能力的惩罚因子进行最优取值, 构成优化递归变分模态分解. 通过对比分析经验模态分解, 集成经验模态分解及优化递归变分模态分解在分解信号时的计算精度; 研究传统变分模态分解与优化递归变分模态分解在处理实际振动信号时计算速率. 结果表明: 优化递归变分模态分解在处理目标信号时精度最高, 与原分量相关性达99.9%; 与集成经验模态分解对比, 可由低至高将信号分解至不同频段, 物理意义更加清晰且不产生虚假模态; 处理实际非线性信号时, 优化递归变分模态分解无需预设分解模态个数, 相比于传统变分模态分解, 计算速率高12.5%—18.5%.
    Variational mode decomposition can improve traditional recursive algorithms, such as empirical mode decomposition, resulting modal aliasing and endpoint effects, but it has a significant influence on signal decomposition accuracy due to its pre-set parameters. The frequency corresponding to the peak value of the target signal power spectrum is proposed to initialize the center frequency required for the variational mode decomposition. The empirical mode decomposition and recursive model is used to improve the variational mode decomposition into the recursive mode algorithm based on the energy cutoff method. The group optimization algorithm optimally takes the penalty factor with bandwidth constraint ability to form an optimized recursive variational mode decomposition. By comparing with and analyzing empirical mode decomposition, integrating empirical mode decomposition and optimizing the computational accuracy of recursive variational mode decomposition in decomposing signals; studying traditional variational mode decomposition and optimizing recursive variational mode decomposition in dealing with actual vibration signals calculating rate, the results are obtained, showing that the optimized recursive variational mode decomposition has the highest accuracy when dealing with the target signal, and the correlation with the original component is 99.9%. Comparing with the integrated empirical mode decomposition, the signal can be decomposed into different frequency bands from low to high, and the physical meaning is clearer. No false modality is generated. When the actual nonlinear signal is processed, the optimized recursive variational mode decomposition does not need to preset the number of decomposition modes, and the calculation rate is 12.5%–18.5% higher than thay of the traditional variational mode decomposition.
      通信作者: 李春, lichunusst@163.com
    • 基金项目: 国家自然科学基金(批准号: 51976131, 51676131)、国家自然科学地区合作与交流项目(批准号: 51811530315)和上海市“科技创新心动计划”地方院校能力建设项目(批准号: 19060502200)资助的课题
      Corresponding author: Li Chun, lichunusst@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51976131, 51676131), the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 51811530315), and the Shanghai Committee of Science and Technology, China (Grant No. 19060502200)
    [1]

    Ingerman E A, London R A, Heintzmann R, Gustafsson M G L 2019 J. Microsc. 273 11

    [2]

    Banjade T P, Yu S, Ma J 2019 J. Seismol. 5 1

    [3]

    Yang F, Shen X, Wang Z 2018 Entropy 20 8

    [4]

    Lian J J, Zhuo L, Wang H J, Dong X F 2018 Mech. Syst. Sig. Process. 107 53Google Scholar

    [5]

    Klionskiy D M, Kaplun D I, Geppener V V 2018 Pattern Recognit Image Anal. 28 122Google Scholar

    [6]

    Chervyakov N, Lyakhov P, Kaplun D, Butusov D, Nagornov N 2018 Electronics 8 135

    [7]

    Qiu X, Ren Y, Suganthan P N, Amaratunga G A J 2017 Appl. Soft Comput. 54 246Google Scholar

    [8]

    Sweeney K T, Mcloone S F, Ward T E 2013 IEEE Trans. Biomed. Eng. 60 97Google Scholar

    [9]

    Guo Y, Naik G R, Nguyen H 2017 IEEE Eng. Med. Biol. Soc. 2013 6812

    [10]

    Wang Y, Liu F, Jiang Z S, He S L, Mo Q Y 2017 Mech. Syst. Sig. Process. 86 75Google Scholar

    [11]

    Xiong T, Bao Y, Zhongyi H U 2014 Neurocomputing 123 174Google Scholar

    [12]

    Dragomiretskiy K, Zosso D 2014 IEEE Trans. Sig. Process. 62 531

    [13]

    Wang Y X, Markert R, Xiang J W, Zheng W G 2015 Mech. Syst. Sig. Process. 60 243

    [14]

    Yang F R, Bi X, Li C C, Liu C F, Tian T 2019 Measurement 140 1Google Scholar

    [15]

    郑小霞, 陈广宁, 任浩翰, 李东东 2019 振动与冲击 38 153

    Zheng X X, Chen G N, Ren H H, Li D D 2019 J. Vib. Shock 38 153

    [16]

    唐贵基, 王晓龙 2015 西安交通大学学报 49 73Google Scholar

    Tang G J, Wang X L 2015 J. Xi'an Jiaotong Univ. 49 73Google Scholar

    [17]

    刘备, 胡伟鹏, 邹孝, 丁亚军, 钱盛友 2019 物理学报 68 028702Google Scholar

    Liu B, Hu E P, Zou X, Ding Y J, Qian S Y 2019 Acta Phys. Sin. 68 028702Google Scholar

    [18]

    Baldini G, Steri G, Dimc F, Giuliani R 2016 Sensors 16 818Google Scholar

    [19]

    Chen X J, Yang Y M, Cui Z X, Shen J 2019 Energy 174 1110Google Scholar

    [20]

    Cui J, Yu R Z, Zhao D B, Yang J Y, Ge W C, Zhou X M 2019 Appl. Energy 247 480Google Scholar

    [21]

    Huang N E, Shen Z, Long S R 1998 Proc. Roy. Soc. A 454 903Google Scholar

    [22]

    Damerval C, Meignen S, Valerie P 2005 IEEE Signal Process Lett. 12 701Google Scholar

    [23]

    Cheng J S, Yu D J, Yang Y 2006 Mech. Syst. Sig. Process. 20 817Google Scholar

    [24]

    Kennedy J, Eberhart R 1995 IEEE Int. Conf. Neural Networks 4 1942

    [25]

    吕中亮 2016 博士学位论文(重庆: 重庆大学)

    Lv Z L 2016 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese)

    [26]

    Mcfadden P D, Smith J D 1984 J. Sound Vib. 96 69Google Scholar

    [27]

    Smith W A, Randall R B 2015 Mech. Syst. Sig. Process. 64–65 100Google Scholar

    [28]

    Chen F, Shi T, Duan S K, Wang L D, Wu J G 2017 Signal Process. 142 423

    [29]

    Chen F, Li X Y, Duan S K, Wang L D, Wu J G 2018 Digit. Signal Prog. 81 16Google Scholar

    [30]

    Chen F, Shao X D 2017 Signal Process. 133 213Google Scholar

    [31]

    Shao X D, Chen F 2019 Signal Process. 160 237Google Scholar

  • 图 1  递归VMD流程

    Fig. 1.  The recursive VMD diagram.

    图 2  基于PSO优化改进递归VMD参数流程

    Fig. 2.  The process of using PSO to optimize recursive VMD parameter.

    图 3  合成信号及其分量 (a) 分量s1; (b) 分量s2; (c) 分量s3; (d) 合成信号f

    Fig. 3.  Analog signal and its component waveform: (a) s1; (b) s2; (c) s3; (d) f.

    图 4  EMD分解结果 (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) res

    Fig. 4.  The results of EMD: (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) res.

    图 5  EEMD分解结果 (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6; (g) IMF7; (h) res

    Fig. 5.  The results of EEMD: (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6; (g) IMF7; (h) res.

    图 6  ORVMD分解结果 (a) IMF1; (b) IMF2; (c) IMF3

    Fig. 6.  The results of ORVMD: (a) IMF1; (b) IMF2; (c) IMF3.

    图 7  早期轴承内圈故障信号 (a) 时域; (b) 频谱

    Fig. 7.  Early inner race fault diagnosis signal.

    图 8  故障信号EEMD分解结果 (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6; (g) IMF7; (h) IMF8; (i) IMF9; (j) IMF10; (k) IMF11; (l) IMF12

    Fig. 8.  The results of EEMD for fault signal: (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6; (g) IMF7; (h) IMF8; (i) IMF9; (j) IMF10; (k) IMF11; (l) IMF12.

    图 9  故障信号ORVMD分解结果 (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6; (g) IMF7; (h) IMF8; (i) IMF9

    Fig. 9.  The results of ORVMD for fault diagnosis: (a) IMF1; (b) IMF2; (c) IMF3; (d) IMF4; (e) IMF5; (f) IMF6; (g) IMF7; (h) IMF8; (i) IMF9.

    图 10  VMD与ORVMD计算耗时

    Fig. 10.  The duration of calculation for VMD and ORVMD.

    表 1  ORVMD参数组合

    Table 1.  Parameter set of ORVMD.

    编号K, α编号K, α
    112, 121001412, 12400
    212, 129001512, 12000
    312, 118001612, 12000
    412, 119001713, 11900
    512, 118001812, 11900
    612, 127001912, 11400
    712, 121002012, 11900
    812, 131002113, 11900
    912, 121002212, 11900
    1012, 120002312, 12000
    1111, 120002412, 12000
    1211, 120002511, 12100
    1312, 13200
    下载: 导出CSV
  • [1]

    Ingerman E A, London R A, Heintzmann R, Gustafsson M G L 2019 J. Microsc. 273 11

    [2]

    Banjade T P, Yu S, Ma J 2019 J. Seismol. 5 1

    [3]

    Yang F, Shen X, Wang Z 2018 Entropy 20 8

    [4]

    Lian J J, Zhuo L, Wang H J, Dong X F 2018 Mech. Syst. Sig. Process. 107 53Google Scholar

    [5]

    Klionskiy D M, Kaplun D I, Geppener V V 2018 Pattern Recognit Image Anal. 28 122Google Scholar

    [6]

    Chervyakov N, Lyakhov P, Kaplun D, Butusov D, Nagornov N 2018 Electronics 8 135

    [7]

    Qiu X, Ren Y, Suganthan P N, Amaratunga G A J 2017 Appl. Soft Comput. 54 246Google Scholar

    [8]

    Sweeney K T, Mcloone S F, Ward T E 2013 IEEE Trans. Biomed. Eng. 60 97Google Scholar

    [9]

    Guo Y, Naik G R, Nguyen H 2017 IEEE Eng. Med. Biol. Soc. 2013 6812

    [10]

    Wang Y, Liu F, Jiang Z S, He S L, Mo Q Y 2017 Mech. Syst. Sig. Process. 86 75Google Scholar

    [11]

    Xiong T, Bao Y, Zhongyi H U 2014 Neurocomputing 123 174Google Scholar

    [12]

    Dragomiretskiy K, Zosso D 2014 IEEE Trans. Sig. Process. 62 531

    [13]

    Wang Y X, Markert R, Xiang J W, Zheng W G 2015 Mech. Syst. Sig. Process. 60 243

    [14]

    Yang F R, Bi X, Li C C, Liu C F, Tian T 2019 Measurement 140 1Google Scholar

    [15]

    郑小霞, 陈广宁, 任浩翰, 李东东 2019 振动与冲击 38 153

    Zheng X X, Chen G N, Ren H H, Li D D 2019 J. Vib. Shock 38 153

    [16]

    唐贵基, 王晓龙 2015 西安交通大学学报 49 73Google Scholar

    Tang G J, Wang X L 2015 J. Xi'an Jiaotong Univ. 49 73Google Scholar

    [17]

    刘备, 胡伟鹏, 邹孝, 丁亚军, 钱盛友 2019 物理学报 68 028702Google Scholar

    Liu B, Hu E P, Zou X, Ding Y J, Qian S Y 2019 Acta Phys. Sin. 68 028702Google Scholar

    [18]

    Baldini G, Steri G, Dimc F, Giuliani R 2016 Sensors 16 818Google Scholar

    [19]

    Chen X J, Yang Y M, Cui Z X, Shen J 2019 Energy 174 1110Google Scholar

    [20]

    Cui J, Yu R Z, Zhao D B, Yang J Y, Ge W C, Zhou X M 2019 Appl. Energy 247 480Google Scholar

    [21]

    Huang N E, Shen Z, Long S R 1998 Proc. Roy. Soc. A 454 903Google Scholar

    [22]

    Damerval C, Meignen S, Valerie P 2005 IEEE Signal Process Lett. 12 701Google Scholar

    [23]

    Cheng J S, Yu D J, Yang Y 2006 Mech. Syst. Sig. Process. 20 817Google Scholar

    [24]

    Kennedy J, Eberhart R 1995 IEEE Int. Conf. Neural Networks 4 1942

    [25]

    吕中亮 2016 博士学位论文(重庆: 重庆大学)

    Lv Z L 2016 Ph. D. Dissertation (Chongqing: Chongqing University) (in Chinese)

    [26]

    Mcfadden P D, Smith J D 1984 J. Sound Vib. 96 69Google Scholar

    [27]

    Smith W A, Randall R B 2015 Mech. Syst. Sig. Process. 64–65 100Google Scholar

    [28]

    Chen F, Shi T, Duan S K, Wang L D, Wu J G 2017 Signal Process. 142 423

    [29]

    Chen F, Li X Y, Duan S K, Wang L D, Wu J G 2018 Digit. Signal Prog. 81 16Google Scholar

    [30]

    Chen F, Shao X D 2017 Signal Process. 133 213Google Scholar

    [31]

    Shao X D, Chen F 2019 Signal Process. 160 237Google Scholar

  • [1] 李朝锋, 王振, 刘欣宇, 杨苏辉, 徐震, 樊超阳. 基于VMD-ICA的水下激光雷达抗散射信号处理方法. 物理学报, 2024, 73(9): 094203. doi: 10.7498/aps.73.20231993
    [2] 杨振, 朱璨, 柯亚娇, 何雄, 罗丰, 王剑, 王嘉赋, 孙志刚. Peltier效应: 从线性到非线性. 物理学报, 2021, 70(10): 108402. doi: 10.7498/aps.70.20201826
    [3] 张玫玫, 高凡, 屠娟, 吴意赟, 章东. 非线性超声射频信号熵对乳腺结节良恶性的定征. 物理学报, 2021, 70(8): 084302. doi: 10.7498/aps.70.20201919
    [4] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析. 物理学报, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [5] 刘备, 胡伟鹏, 邹孝, 丁亚军, 钱盛友. 基于变分模态分解与多尺度排列熵的生物组织变性识别. 物理学报, 2019, 68(2): 028702. doi: 10.7498/aps.68.20181772
    [6] 杜义浩, 齐文靖, 邹策, 张晋铭, 谢博多, 谢平. 基于变分模态分解-相干分析的肌间耦合特性. 物理学报, 2017, 66(6): 068701. doi: 10.7498/aps.66.068701
    [7] 谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰. 基于变分模态分解-传递熵的脑肌电信号耦合分析. 物理学报, 2016, 65(11): 118701. doi: 10.7498/aps.65.118701
    [8] 石兰芳, 周先春, 莫嘉琪. 一类大气浅水波系统的广义变分迭代行波近似解. 物理学报, 2013, 62(23): 230202. doi: 10.7498/aps.62.230202
    [9] 欧阳玉花, 袁萍, 贾向东, 王小云, 薛思敏. 用信号处理技术及传播理论还原雷声频谱. 物理学报, 2013, 62(8): 084303. doi: 10.7498/aps.62.084303
    [10] 曹小群, 宋君强, 张卫民, 赵军, 朱小谦. 海-气耦合动力系统的改进变分迭代解法. 物理学报, 2012, 61(3): 030203. doi: 10.7498/aps.61.030203
    [11] 吴钦宽. 一类非线性扰动Burgers方程的孤子变分迭代解法. 物理学报, 2012, 61(2): 020203. doi: 10.7498/aps.61.020203
    [12] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响. 物理学报, 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [13] 莫嘉琪, 张伟江, 陈贤峰. 一类强非线性发展方程孤波变分迭代解法. 物理学报, 2009, 58(11): 7397-7401. doi: 10.7498/aps.58.7397
    [14] 莫嘉琪, 张伟江, 陈贤峰. 强非线性发展方程孤波同伦解法. 物理学报, 2007, 56(11): 6169-6172. doi: 10.7498/aps.56.6169
    [15] 曹 彪, 吕小青, 曾 敏, 王振民, 黄石生. 短路过渡电弧焊电流信号的近似熵分析. 物理学报, 2006, 55(4): 1696-1705. doi: 10.7498/aps.55.1696
    [16] 莫嘉琪, 林万涛. 厄尔尼诺大气物理机理的变分迭代解法. 物理学报, 2005, 54(3): 1081-1083. doi: 10.7498/aps.54.1081
    [17] 邵 杰, 高晓明, 袁怿谦, 杨 颙, 曹振松, 裴世鑫, 张为俊. 信号处理改善波长调制光谱灵敏度的实验研究. 物理学报, 2005, 54(10): 4638-4642. doi: 10.7498/aps.54.4638
    [18] 李鸿光, 孟 光. 基于经验模式分解的混沌干扰下谐波信号的提取方法. 物理学报, 2004, 53(7): 2069-2073. doi: 10.7498/aps.53.2069
    [19] 汪芙平, 王赞基, 郭静波. 混沌背景下信号的盲分离. 物理学报, 2002, 51(3): 474-481. doi: 10.7498/aps.51.474
    [20] 汪芙平, 郭静波, 王赞基, 萧达川, 李茂堂. 强混沌干扰中的谐波信号提取. 物理学报, 2001, 50(6): 1019-1023. doi: 10.7498/aps.50.1019
计量
  • 文章访问数:  13223
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-30
  • 修回日期:  2019-09-11
  • 上网日期:  2019-11-26
  • 刊出日期:  2019-12-05

/

返回文章
返回