搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于同步光解的OH自由基标定方法

王凤阳 胡仁志 谢品华 王怡慧 陈浩 张国贤 刘文清

引用本文:
Citation:

基于同步光解的OH自由基标定方法

王凤阳, 胡仁志, 谢品华, 王怡慧, 陈浩, 张国贤, 刘文清

Calibration source for OH radical based on synchronous photolysis

Wang Feng-Yang, Hu Ren-Zhi, Xie Pin-Hua, Wang Yi-Hui, Chen Hao, Zhang Guo-Xian, Liu Wen-Qing
PDF
HTML
导出引用
  • OH自由基是大气中最重要的氧化剂, 准确测量对流层OH自由基的浓度是厘清我国二次污染形成机理的关键. 本文介绍了一种基于同步光解的OH自由基便携式标定方法, 使用汞灯的185 nm线辐射处于层流状态下的具有一定水汽浓度的合成空气, 光解HO2和O2定量产生确定浓度的OH, HO2自由基和O3. 开展了臭氧浓度及廓线分布因子P和氧气吸收截面等影响因素的准确测量, 降低该标定方法的不确定度. 进一步构建便携式标定装置, 建立应用于实际外场标定的OH自由基浓度快速获取方法. 开展基于激光诱导荧光技术OH自由基(LIF-OH)探测系统的准确标定测试, 准确产生3×108—2.8×109 cm–3浓度的OH自由基, LIF-OH探测系统的荧光信号与自由基浓度具有非常好的相关性. 在综合外场观测(STORM)的应用中该标定装置的不确定度为13.0%, 具有良好的稳定性和准确性, 可以用于复杂外场环境下LIF-OH系统的快速标定.
    OH radical is the most important oxidant in the atmosphere, and controls the tropospheric concentration of tropospheric trace gases such as CO, SO2, NO2, CH4 and other volatile organic compounds. Accurate measurement of the concentration of OH radical in troposphere is the key to clarifying the formation mechanism of secondary pollution in China. The laser-induced fluorescence (LIF) technique is widely used in tropospheric OH radical field observation due to its high sensitivity, high selectivity, and small interference. However, the LIF technique is not an absolute measurement technology. In recent years, OH radical measurements and simulations in many field observations show that the improvement of accuracy of calibration is a way to reduce the differences. Currently, the common calibration methods are ozone-alkene method and water photolysis method. Further improving the accuracy of calibration is a key factor to ensure the accurate measurement of OH radicals. In this paper, a portable calibration method of OH radicals based on simultaneous photolysis is introduced. The synthetic air with a certain water vapor concentration is irradiated in laminar flow by 185 nm light of mercury lamp, and the photolysis of water vapor and O2 produce OH, HO2 radicals and O3. The concentration of OH radicals is calculated by oxygen concentration, water vapor concentration, ozone concentration, oxygen absorption cross section and water vapor absorption cross section. The water vapor is measured by a high-precision temperature and humidity probe, and the systematic error of the probe is corrected by 911-0016 ammonia (NH3, H2O) analyzer. As the ozone concentration is only 0.5-1 ppb in the calibration, the commercial ozone analyzer cannot meet the requirement for the measurement. A high-precision ozone analyzer O3-CRDS based on cavity-ring-down spectrocopy is built to achieve the detection limit of 15 ppt (1σ). Using the O3-CRDS analyzer, the concentration distribution coefficient of ozone in laminar flow along the radial direction of the flow tube (P = 1.9) is measured. Because the absorption cross section of oxygen at 185 nm is seriously affected by oxygen column concentration and the characteristics of mercury lamp, the oxygen absorption cross section is remeasured based on Lambert’s law, which is $ \sigma_{\rm O_2} $ = (1.25 ± 0.08)×10–20 cm2. The portable calibration device is established by establishing the corresponding relationship between ozone concentration and light intensity. By changing the concentration of water vapor in the flow tube, the OH radicals with concentrations in a range of 3×108-2.8×109 cm–3 are produced, which are used to calibrate the atmospheric OH radical measurement instrument based on LIF technique. The fluorescence signal has a good correlation with the concentration of OH. The calibration device of OH radical is used to calibrate the LIF system during “a comprehensive study of the ozone formation mechanism in Shenzhen” (STORM) field observation in Autumn 2018. The calibration results under the field condition show that the calibration uncertainty of the calibration device for LIF instrument is 13.0%, which has good stability and accuracy.
      通信作者: 胡仁志, rzhu@aiofm.ac.cn ; 谢品华, phxie@aiofm.ac.cn
    • 基金项目: 国家级-国家重点研发计划(2017YFC0209401)
      Corresponding author: Hu Ren-Zhi, rzhu@aiofm.ac.cn ; Xie Pin-Hua, phxie@aiofm.ac.cn
    [1]

    Guo S, Hu M, Zamora M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z, Shao M, Zeng L M, Molina M J, Zhang R Y 2014 Proc. Natl. Acad. Sci. U.S.A. 111 17373Google Scholar

    [2]

    Huang R J, Zhang Y L, Bozzetti C, Ho K F, Cao J J, Han Y M, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z S, Szidat S, Baltensperger U, El Haddad I, Prevot A S H 2014 Nature 514 218Google Scholar

    [3]

    Ehhalt D H 1999 Phys. Chem. Chem. Phys. 1 5401Google Scholar

    [4]

    Jaegle L, Jacob D J, Brune W H, Faloona I, Tan D, Heikes B G, Kondo Y, Sachse G W, Anderson B, Gregory G L, Singh H B, Pueschel R, Ferry G, Blake D R, Shetter R E 2000 J. Geophys. Res. Atmos. 105 3877Google Scholar

    [5]

    陆克定, 张远航 2010 化学进展 22 500

    Lu K D, Zhang Y H 2010 Prog. Chem. 22 500

    [6]

    Hofzumahaus A, Rohrer F, Lu K D, Bohn B, Brauers T, Chang C, Fuchs H, Holland F, Kita K, Kondo Y, Li X, Lou S R, Shao M, Zeng L M, Wahner A, Zhang Y H 2009 Science 324 1702Google Scholar

    [7]

    Brauers T, Aschmutat U, Brandenburger U, Dorn H P, Hausmann M, Heßling M, Hofzumahaus A, Holland F, Plass-Dülmer C, Ehhalt D H 1996 Geophys. Res. Lett. 23 2545Google Scholar

    [8]

    Mauldin R L, Cantrell C A, Zondlo M, Kosciuch E, Eisele F L, Chen G, Davis D, Weber R, Crawford J, Blake D, Bandy A, Thornton D 2003 J. Geophys. Res. Atmos. 108 8796Google Scholar

    [9]

    Thomas L A G, Hard M 1995 Atmos. Sci. 52 3354Google Scholar

    [10]

    Stone D, Whalley L K, Heard D E 2012 Chem. Soc. Rev. 41 6348Google Scholar

    [11]

    Novelli A, Hens K, Ernest C T, Kubistin D, Regelin E, Elste T, Plass-Duelmer C, Martinez M, Lelieveld J, Harder H 2014 Atmos. Meas. Tech. 7 3413Google Scholar

    [12]

    Lu K D, Hofzumahaus A, Holland F, Bohn B, Brauers T, Fuchs H, Hu M, Haeseler R, Kita K, Kondo Y, Li X, Lou S R, Oebel A, Shao M, Zeng L M, Wahner A, Zhu T, Zhang Y H, Rohrer F 2013 Atmos. Chem. Phys. 13 1057Google Scholar

    [13]

    Ren X R, Olson J R, Crawford J H, Brune W H, Mao J Q, Long R B, Chen Z, Chen G, Avery M A, Sachse G W, Barrick J D, Diskin G S, Huey L G, Fried A, Cohen R C, Heikes B, Wennberg P O, Singh H B, Blake D R, Shetter R E 2008 J. Geophys. Res. Atmos. 113 D05310Google Scholar

    [14]

    Whalley L K, Edwards P M, Furneaux K L, Goddard A, Ingham T, Evans M J, Stone D, Hopkins J R, Jones C E, Karunaharan A, Lee J D, Lewis A C, Monks P S, Moller S J, Heard D E 2011 Atmos. Chem. Phys. 11 7223Google Scholar

    [15]

    Faloona I C, Tan D, Lesher R L, Hazen N L, Frame C L, Simpas J B, Harder H, Martinez M, Di Carlo P, Ren X R, Brune W H 2004 J. Atmos. Chem. 47 139Google Scholar

    [16]

    Hofzumahaus A, Heard D E 2016 Assessment of Local HOx and ROx Measurement Techniques: Achievements, Challenges, and Future Directions - Outcome From the International HOx Workshop 2015 endorsed by IGAC Forschungzentrum Juelich, Germany, March 23−25, 2015, p1

    [17]

    Hard T M, George L A, O'Brien R J 2002 Environ. Sci. Technol. 36 1783Google Scholar

    [18]

    Dusanter D V S, Stevens P S 2008 Atmos. Chem. Phys. 8 321Google Scholar

    [19]

    Bloss W J, Lee J D, Bloss C, Heard D E, Pilling M J, Wirtz K, Martin-Reviejo M, Siese M 2004 Atmos. Chem. Phys. 4 571Google Scholar

    [20]

    Schultz M, Heitlinger M, Mihelcic D, Volz-Thomas A 1995 J. Geophys. Res. 100 18811Google Scholar

    [21]

    Kanaya Y, Sadanaga Y, Hirokawa J, Kajii Y, Akimoto H 2001 J. Atmos. Chem. 38 73Google Scholar

    [22]

    Kono M, Lewis B R, Baldwin K G H, Gibson S T 2003 J. Chem. Phys. 118 10924Google Scholar

    [23]

    Lanzendorf E J, Hanisco T F, Donahue N M, Wennberg P O 1997 Geophys. Res. Lett. 24 3037Google Scholar

    [24]

    Creasey D J, Heard D E, Lee J D 2000 Geophys. Res. Lett. 27 1651Google Scholar

    [25]

    Hofzumahaus A, Brauers T, Aschmutat U, Brandenburger U, Dorn H P, Hausmann M, Heßling M, Holland F, Plass-Dülmer C, Sedlacek M, Weber M, Ehhalt D H 1997 Geophys. Res. Lett. 24 3039Google Scholar

    [26]

    Li Z Y, Hu R Z, Xie P H, Chen H, Liu X Y, Liang S X, Wang D, Wang F Y, Wang Y H, Lin C, Liu J G, Liu W Q 2019 Atmos. Meas. Tech. 12 3223Google Scholar

    [27]

    Cantrell C A, Zimmer A, Tyndall G S 1997 Geophys. Res. Lett. 24 2687Google Scholar

  • 图 1  流动管层流分布示意图

    Fig. 1.  Schematic diagram of laminar distribution in the flow tube

    图 2  同步光解H2O和O2装置示意图

    Fig. 2.  System diagram of synchronous photolysis of H2O and O2.

    图 3  O3-CRDS示意图

    Fig. 3.  Schematic diagram of O3-CRDS.

    图 4  (a) 当仪器只采样零空气时, 黑点代表1 s平均的数据, 红点代表30 s的平均数据; (b)臭氧浓度的Allan方差

    Fig. 4.  (a) When the instrument only samples zero air, the black point represents the average data of 1 s, and the red point represents the average data of 30 s; (b) Allan variance of ozone concentration.

    图 5  臭氧浓度分布因子P测量结果

    Fig. 5.  Measurement results of ozone concentration distribution factor P.

    图 6  (a) 汞灯光强随N2O浓度变化; (b) 光强与臭氧浓度的关系

    Fig. 6.  (a) Light intensity at 185 nm as a function of N2O concentration; (b) relationship between light intensity and ozone concentration.

    图 7  标定装置产生的OH自由基浓度对应LIF-OH系统荧光计数

    Fig. 7.  Concentration of OH radicals produced by the calibration device corresponds to the fluorescence count of LIF-OH system.

    图 8  使用OH自由基标定装置外场标定LIF-OH系统的结果

    Fig. 8.  Calibration results of LIF-OH instrument by OH radical calibration source under field conditions.

    表 1  OH自由基标定装置不确定度

    Table 1.  Uncertainty of OH radical calibration source.

    误差源不确定度来源
    臭氧分布系数P6.0%测量
    臭氧灵敏度Qv2.9%测量
    PD光强 I'1.0%测量
    水汽浓度[H2O]2.0%测量
    氧气吸收截面$ \sigma _{\rm O_2} $7.0%测量
    水汽吸收截面$ {\sigma _{{{\rm{H}}_2}{\rm{O}}}} $3.0%引用
    标定装置产生OH自由基误差10.4%计算
    下载: 导出CSV
  • [1]

    Guo S, Hu M, Zamora M L, Peng J F, Shang D J, Zheng J, Du Z F, Wu Z, Shao M, Zeng L M, Molina M J, Zhang R Y 2014 Proc. Natl. Acad. Sci. U.S.A. 111 17373Google Scholar

    [2]

    Huang R J, Zhang Y L, Bozzetti C, Ho K F, Cao J J, Han Y M, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z S, Szidat S, Baltensperger U, El Haddad I, Prevot A S H 2014 Nature 514 218Google Scholar

    [3]

    Ehhalt D H 1999 Phys. Chem. Chem. Phys. 1 5401Google Scholar

    [4]

    Jaegle L, Jacob D J, Brune W H, Faloona I, Tan D, Heikes B G, Kondo Y, Sachse G W, Anderson B, Gregory G L, Singh H B, Pueschel R, Ferry G, Blake D R, Shetter R E 2000 J. Geophys. Res. Atmos. 105 3877Google Scholar

    [5]

    陆克定, 张远航 2010 化学进展 22 500

    Lu K D, Zhang Y H 2010 Prog. Chem. 22 500

    [6]

    Hofzumahaus A, Rohrer F, Lu K D, Bohn B, Brauers T, Chang C, Fuchs H, Holland F, Kita K, Kondo Y, Li X, Lou S R, Shao M, Zeng L M, Wahner A, Zhang Y H 2009 Science 324 1702Google Scholar

    [7]

    Brauers T, Aschmutat U, Brandenburger U, Dorn H P, Hausmann M, Heßling M, Hofzumahaus A, Holland F, Plass-Dülmer C, Ehhalt D H 1996 Geophys. Res. Lett. 23 2545Google Scholar

    [8]

    Mauldin R L, Cantrell C A, Zondlo M, Kosciuch E, Eisele F L, Chen G, Davis D, Weber R, Crawford J, Blake D, Bandy A, Thornton D 2003 J. Geophys. Res. Atmos. 108 8796Google Scholar

    [9]

    Thomas L A G, Hard M 1995 Atmos. Sci. 52 3354Google Scholar

    [10]

    Stone D, Whalley L K, Heard D E 2012 Chem. Soc. Rev. 41 6348Google Scholar

    [11]

    Novelli A, Hens K, Ernest C T, Kubistin D, Regelin E, Elste T, Plass-Duelmer C, Martinez M, Lelieveld J, Harder H 2014 Atmos. Meas. Tech. 7 3413Google Scholar

    [12]

    Lu K D, Hofzumahaus A, Holland F, Bohn B, Brauers T, Fuchs H, Hu M, Haeseler R, Kita K, Kondo Y, Li X, Lou S R, Oebel A, Shao M, Zeng L M, Wahner A, Zhu T, Zhang Y H, Rohrer F 2013 Atmos. Chem. Phys. 13 1057Google Scholar

    [13]

    Ren X R, Olson J R, Crawford J H, Brune W H, Mao J Q, Long R B, Chen Z, Chen G, Avery M A, Sachse G W, Barrick J D, Diskin G S, Huey L G, Fried A, Cohen R C, Heikes B, Wennberg P O, Singh H B, Blake D R, Shetter R E 2008 J. Geophys. Res. Atmos. 113 D05310Google Scholar

    [14]

    Whalley L K, Edwards P M, Furneaux K L, Goddard A, Ingham T, Evans M J, Stone D, Hopkins J R, Jones C E, Karunaharan A, Lee J D, Lewis A C, Monks P S, Moller S J, Heard D E 2011 Atmos. Chem. Phys. 11 7223Google Scholar

    [15]

    Faloona I C, Tan D, Lesher R L, Hazen N L, Frame C L, Simpas J B, Harder H, Martinez M, Di Carlo P, Ren X R, Brune W H 2004 J. Atmos. Chem. 47 139Google Scholar

    [16]

    Hofzumahaus A, Heard D E 2016 Assessment of Local HOx and ROx Measurement Techniques: Achievements, Challenges, and Future Directions - Outcome From the International HOx Workshop 2015 endorsed by IGAC Forschungzentrum Juelich, Germany, March 23−25, 2015, p1

    [17]

    Hard T M, George L A, O'Brien R J 2002 Environ. Sci. Technol. 36 1783Google Scholar

    [18]

    Dusanter D V S, Stevens P S 2008 Atmos. Chem. Phys. 8 321Google Scholar

    [19]

    Bloss W J, Lee J D, Bloss C, Heard D E, Pilling M J, Wirtz K, Martin-Reviejo M, Siese M 2004 Atmos. Chem. Phys. 4 571Google Scholar

    [20]

    Schultz M, Heitlinger M, Mihelcic D, Volz-Thomas A 1995 J. Geophys. Res. 100 18811Google Scholar

    [21]

    Kanaya Y, Sadanaga Y, Hirokawa J, Kajii Y, Akimoto H 2001 J. Atmos. Chem. 38 73Google Scholar

    [22]

    Kono M, Lewis B R, Baldwin K G H, Gibson S T 2003 J. Chem. Phys. 118 10924Google Scholar

    [23]

    Lanzendorf E J, Hanisco T F, Donahue N M, Wennberg P O 1997 Geophys. Res. Lett. 24 3037Google Scholar

    [24]

    Creasey D J, Heard D E, Lee J D 2000 Geophys. Res. Lett. 27 1651Google Scholar

    [25]

    Hofzumahaus A, Brauers T, Aschmutat U, Brandenburger U, Dorn H P, Hausmann M, Heßling M, Holland F, Plass-Dülmer C, Sedlacek M, Weber M, Ehhalt D H 1997 Geophys. Res. Lett. 24 3039Google Scholar

    [26]

    Li Z Y, Hu R Z, Xie P H, Chen H, Liu X Y, Liang S X, Wang D, Wang F Y, Wang Y H, Lin C, Liu J G, Liu W Q 2019 Atmos. Meas. Tech. 12 3223Google Scholar

    [27]

    Cantrell C A, Zimmer A, Tyndall G S 1997 Geophys. Res. Lett. 24 2687Google Scholar

  • [1] 余觉知, 胡勇胜, 李泓, 黄学杰, 陈立泉. 一类阴离子自由基液态电极材料研究. 物理学报, 2017, 66(8): 088201. doi: 10.7498/aps.66.088201
    [2] 徐梅, 令狐荣锋, 支启军, 杨向东, 吴位巍. 自由基分子BeH外电场特性. 物理学报, 2016, 65(16): 163102. doi: 10.7498/aps.65.163102
    [3] 朱国梁, 胡仁志, 谢品华, 陈浩, 秦敏, 方武, 王丹, 杏兴彪. 基于差分光学吸收光谱方法的OH自由基定标系统研究. 物理学报, 2015, 64(8): 080703. doi: 10.7498/aps.64.080703
    [4] 韩晓琴. SiF2(1A1)自由基的从头算及势能函数. 物理学报, 2014, 63(23): 233101. doi: 10.7498/aps.63.233101
    [5] 曾晖, 赵俊. SeN2自由基解析势能函数的耦合簇理论研究. 物理学报, 2014, 63(6): 063101. doi: 10.7498/aps.63.063101
    [6] 韩晓琴, 肖夏杰, 刘玉芳. HNO(1A’)自由基的从头算势能曲线. 物理学报, 2013, 62(19): 193101. doi: 10.7498/aps.62.193101
    [7] 郭连波, 郝荣飞, 郝中骐, 李阔湖, 沈萌, 任昭, 李祥友, 曾晓雁. 激光诱导AlO自由基B2+X2+跃迁光谱研究. 物理学报, 2013, 62(22): 224211. doi: 10.7498/aps.62.224211
    [8] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质. 物理学报, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [9] 朱遵略, 郎建华, 乔浩. AsCl自由基的基态及激发态的势能函数与光谱常数的研究. 物理学报, 2013, 62(11): 113103. doi: 10.7498/aps.62.113103
    [10] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [11] 彭志敏, 丁艳军, 杨乾锁, 姜宗林. 基于OH自由基A2Σ + →X2Πr 电子带系发射光谱的温度测量技术. 物理学报, 2011, 60(5): 053302. doi: 10.7498/aps.60.053302
    [12] 周翔, 张萱, 刘爱芬, 曾祥华. FC(O)O2的结构及其自由基与NO反应的微观机理研究. 物理学报, 2010, 59(7): 5128-5134. doi: 10.7498/aps.59.5128
    [13] 朱吉亮, 任廷琦, 王庆美. SH(D)和OH(D)自由基基态的结构与势能函数. 物理学报, 2009, 58(5): 3047-3051. doi: 10.7498/aps.58.3047
    [14] 赵 江, 崔 磊, 曾祥华, 徐秀莲. FC(O)O自由基与NO反应机理的理论研究. 物理学报, 2008, 57(11): 7349-7353. doi: 10.7498/aps.57.7349
    [15] 马 靖, 丁 蕾, 顾学军, 方 黎, 张为俊, 卫立夏, 王 晶, 杨 斌, 黄超群, 齐 飞. 三氯乙烯的真空紫外同步辐射光电离和光解离. 物理学报, 2006, 55(6): 2708-2713. doi: 10.7498/aps.55.2708
    [16] 黄超群, 卫立夏, 杨 斌, 杨 锐, 王思胜, 单晓斌, 齐 飞, 张允武, 盛六四, 郝立庆, 周士康, 王振亚. HFC-152a的同步辐射真空紫外光电离和光解离研究. 物理学报, 2006, 55(3): 1083-1088. doi: 10.7498/aps.55.1083
    [17] 李 权, 朱正和. CH, NH和OH自由基基态与低激发态分子结构与势能函数. 物理学报, 2006, 55(1): 102-106. doi: 10.7498/aps.55.102
    [18] 陈旸, 陆庆正, 马兴孝, 崔执凤, 赵献章, 陆同兴. 气相CCl2自由基的发射光谱. 物理学报, 1992, 41(10): 1582-1589. doi: 10.7498/aps.41.1582
    [19] 陈旸, 陆庆正, 王冬青, 盛六四, 王鸿飞, 张允武, 俞书勤, 马兴孝. 超声射流冷却CCl2自由基的激光诱导荧光激发谱. 物理学报, 1991, 40(6): 885-890. doi: 10.7498/aps.40.885
    [20] 傅广生, 王金国, 李晓苇, 韩理, 吕福润. SiH4激光等离子体内自由基反应动力学研究. 物理学报, 1991, 40(12): 2024-2031. doi: 10.7498/aps.40.2024
计量
  • 文章访问数:  5995
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-21
  • 修回日期:  2020-02-11
  • 刊出日期:  2020-05-05

/

返回文章
返回