搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

探测器光电特性对叠层相干衍射成像的影响

齐乃杰 何小亮 吴丽青 刘诚 朱健强

引用本文:
Citation:

探测器光电特性对叠层相干衍射成像的影响

齐乃杰, 何小亮, 吴丽青, 刘诚, 朱健强

Effect of detector photoelectric parameters on ptychographic iterative engine

Qi Nai-Jie, He Xiao-Liang, Wu Li-Qing, Liu Cheng, Zhu Jian-Qiang
PDF
HTML
导出引用
  • 从叠层相干衍射成像的解析求解模型出发, 通过在频域中将叠层相干衍射成像描述为待测样品与照明光空间频谱的线性方程组, 将探测器的光电参数和线性方程组的个数以及每个方程的未知数个数直接关联. 根据方程组存在唯一解的条件, 从理论上定量分析叠层相干衍射成像对探测器采样间隔、靶面宽度、像元尺寸、灵敏度和动态范围等关键光电参数的要求以及图像重建所受影响. 通过数值模拟, 对理论分析和预测的正确性进行了数值验证, 得出了参数不理想情况下叠层相干衍射成像仍能获得高质量重建像的物理机制, 对于提高重建质量和改进实验装置具有直接促进意义.
    An analytical solution model for ptychographic iterative engine (PIE) is proposed. In this model, PIE can be described as a system of linear equations between the sample and the illumination in the frequency domain. This system of linear equations ( AX = B ) is derived with the spectrum of the illumination as the coefficient ( A ), the spectrum of the sample as the unknown ( X ), and the intensity of the diffraction pattern as the vector ( B ). Hence, the sample can be recovered by solving this linear system. In PIE, the detector (such as Pike F-100, AVT) has a large resolution, meaning that 1000 × 1000 linear equations can be generated by recording a single pattern. It is still the case, however, that the number of obtained equations is smaller than the number of unknowns, leading to the inability to obtain a unique solution about the sample. Relative motions of sample and illumination, can generate more diffraction patterns to construct a sufficient number of linear independent equations. For coefficient ( A ), since the initial illumination is known, the illumination after shifting can still be obtained by recording its shifting distance. Hence the unique solution for the sample can be directly obtained by solving this linear independent system of equations. Simultaneously, the photoelectric parameters of the detector have a significant influence on the imaging quality of PIE. Using this linear system, the photoelectric parameters of the detector can be characterized by the number of linear equations and unknowns in each equation. According to the conditions that there is a unique solution in the system of equations and the requirements of the photoelectric parameters (such as pixel sampling interval, width of target surface, pixel size, sensitivity and dynamic range), the influence of the reconstruction for PIE is quantified theoretically. Obviously, the numerical simulation results based on this theory not only verify the correctness of the theoretical analysis and predictions, but also reveal the physical mechanism of recovering high-quality results in imperfect photoelectric parameters of detector, which can contribute to improving the quality of their reconstruction and optimizing the experimental setup.
      通信作者: 刘诚, chengliu@siom.ac.cn
      Corresponding author: Liu Cheng, chengliu@siom.ac.cn
    [1]

    Guo Y, Han H Y, Wang L W, Zhu Y R, Gao X W, Yang Z G, Weng X Y, Yan W, Qu J L 2022 Appl. Phys. Lett. 121 023701Google Scholar

    [2]

    Wang Z, Zheng W, Hsu C Y S, Huang Z W 2015 Appl. Phys. Lett. 106 033701Google Scholar

    [3]

    Fiolka R, Shao L, Rego E H, Davidson M W, Gustafsson M G L 2012 Proc. Natl. Acad. Sci. 109 5311Google Scholar

    [4]

    Smith H I 1995 J. Vac. Sci. Technol. B 13 2323Google Scholar

    [5]

    Wu S R, Hwu Y, Margaritondo G 2012 Materials 5 1752Google Scholar

    [6]

    蒋晖, 李爱国 2022 光学学报 42 1134004Google Scholar

    Jiang H, Li A G 2022 Acta Opt. Sin. 42 1134004Google Scholar

    [7]

    Roels J, Aelterman J, Luong H Q, Lippens S, Pizurica A, Saeys Y, Philips W 2018 J. Microsc.-Oxford 271 239Google Scholar

    [8]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [9]

    Fienup J R 1982 Appl. Optics 21 2758Google Scholar

    [10]

    Xu R, Salha S, Raines K S, Jiang H D, Chen C C, Takahashi Y, Kohmura Y, Nishino Y, Song C Y, Ishikawa T, Miao J W 2011 J. Synchrotron Radiat. 18 293Google Scholar

    [11]

    Rau C, Wagner U, Pesic Z, De Fanis A 2011 Phys. Status Solidi A 208 2522Google Scholar

    [12]

    周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼 2020 物理学报 69 034102Google Scholar

    Zhou G Z, Hu Z, Yang S M, Liao K L, Zhou P, Liu K, Hua W Q, Wang Y Z, Bian F G, Wang J 2020 Acta Phys. Sin. 69 034102Google Scholar

    [13]

    Fienup J R, Wackerman C C 1986 J. Opt. Soc. Am. A 3 1897Google Scholar

    [14]

    Faulkner H, Rodenburg J M 2004 Phys. Rev. Lett. 93 023903Google Scholar

    [15]

    Rodenburg J M, Faulkner H 2004 Appl. Phys. Lett. 85 4795Google Scholar

    [16]

    Sha H Z, Cui J Z, Yu R 2022 Sci. Adv. 8 2275Google Scholar

    [17]

    Chen Z, Jiang Y, Shao Y T, Holtz M E, Odstril M, Guizar-Sicairos M, Hanke I, Ganschow S, Schlom D G, Muller D A 2021 Science 372 826Google Scholar

    [18]

    Jiang S W, Guo C F, Bian Z C, Wang R H, Zhu J K, Song P M, Hu P, Hu D, Zhang Z B, Hoshino K, Feng B, Zheng G A 2022 Biosens. Bioelectron. 196 113699Google Scholar

    [19]

    Wang T B, Jiang S W, Song P M, Wang R H, Yang L M, Zhang T, Zheng G A 2023 Biomed. Opt. Express 14 489Google Scholar

    [20]

    Wise A M, Weker J N, Kalirai S, Farmand M, Shapiro D A, Meirer F, Weckhuysen B M 2016 ACS Catal. 6 2178Google Scholar

    [21]

    Claus D, Maiden A M, Zhang F C, Sweeney F G R, Humphry M J, Schluesener H, Rodenburg J M 2012 Opt. Express 20 9911Google Scholar

    [22]

    Cheng B, Zhang X J, Liu C, Zhu J Q 2019 J. Optics-UK 21 065602Google Scholar

    [23]

    Zong B M, Luan J Y, Jiang Z L, Kong Y, Wang S Y, Liu C 2019 Opt. Eng. 58 054102Google Scholar

    [24]

    Dong X, Pan X C, Liu C, Zhu J Q 2019 High Power Laser Sci. 7 03000e48Google Scholar

    [25]

    Humphry M, Kraus B, Hurst A, Maiden A M, Rodenburg J M 2012 Nat. Commun. 3 730Google Scholar

    [26]

    Williams G J, Quiney H M, Dhal B B, Tran C Q, Nugent K A, Peele A G, Paterson D, de Jonge M D 2006 Phys. Rev. Lett. 97 025506Google Scholar

    [27]

    Rodenburg J M, Hurst A C, Cullis A G 2007 Ultramicroscopy 107 227Google Scholar

    [28]

    Lorenzo V, Thomas F, Peter Z, Erwin H 2018 Opt. Lett. 43 543Google Scholar

    [29]

    Xu Y M, Pan X C, Sun M Y, Liu W F, Liu C, Zhu J Q 2022 Photonics Res. 10 1937Google Scholar

    [30]

    Lu C C, Zhou Y, Guo Y X, Jiang S W, Zhang Z B, Zheng G A, Zhong J G 2021 Opt. Express 29 12491Google Scholar

    [31]

    Li M, Bian L H, Zheng G A, Maiden A, Liu Y, Li Y M, Suo J L, Dai Q H, Zhang J 2021 Opt. Lett. 46 1624Google Scholar

    [32]

    Shi Q S, Zhou W Y, Hui W W, Huang K C, Zhao H Y, Tian J G 2018 Opt. Eng. 57 114104Google Scholar

    [33]

    Sinha A, Lee J, Li S, Barbastathis G 2017 Optica 4 1117Google Scholar

    [34]

    He X L, Pan X C, Tao H, Liu C, Zhu J Q 2022 AIP Adv. 12 065225Google Scholar

    [35]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar

    [36]

    Zhang F C, Peterson I, Vila-Comamala J, Berenguer A D F, Bean R, Chen B, Menzel A, Robinson I K, Rodenburg J M 2013 Opt. Express 21 13592Google Scholar

    [37]

    Edo T B, Zhang F C, Rodenburg J M 2010 Proc. SPIE 7729 77291HGoogle Scholar

    [38]

    王磊, 窦健泰, 马骏, 袁操今, 高志山, 魏聪, 张天宇 2017 物理学报 66 094201Google Scholar

    Wang L, Dou J T, Ma J, Yuan C J, Gao Z S, Wei C, Zhang T Y 2017 Acta Phys. Sin. 66 094201Google Scholar

    [39]

    Wan M, Healy J J, Sheridan J T 2020 Opt. Laser. Technol. 122 105859Google Scholar

    [40]

    Liu C, Eschen W, Loetgering L, Molina D S P, Klas R, Iliou A, Steinert M, Herkersdorf S, Kirsche A, Thomas P, Hillmann F, Limpert J, Rothhardt J 2023 PhotoniX 4 1Google Scholar

    [41]

    Thibault P, Menzel A 2013 Nature 494 68Google Scholar

    [42]

    Batey D J, Edo T B, Rau C, Wagner U, Pešić Z D, Waigh T A, Rodenburg J M 2014 Phys. Rev. A 89 043812Google Scholar

    [43]

    Maiden A M, Humphry M J, Zhang F C, Rodenburg J M 2011 J. Opt. Soc. Am. A 28 604Google Scholar

    [44]

    Boyle W S, Smith G E 1970 Bell Labs Tech. J. 49 587Google Scholar

    [45]

    Fossum E R 1997 IEEE T. Electron Dev. 44 1689Google Scholar

    [46]

    Pan X C, Veetil S P, Wang B S, Liu C, Zhu J Q 2015 J. Mod. Optic. 62 1270Google Scholar

  • 图 1  PIE成像的示意图

    Fig. 1.  Diagram of the setup for PIE.

    图 2  待测样品的(a)振幅和(b)相位分布; 照明光的(c)振幅和(d)相位分布; (e)所记录的其中一个衍射光斑强度图; (f)重建迭代收敛曲线; 重建样品的(g)振幅和(h)相位分布

    Fig. 2.  (a) Amplitude and (b) phase of sample; (c) amplitude and (d) phase of illumination; (e) one of recorded diffraction patterns; (f) iterative convergence curve of reconstruction; (g) amplitude and (h) phase of recovered sample.

    图 3  相干衍射成像中照明光与样品的频域卷积示意图

    Fig. 3.  Diagram of frequency domain convolution of illumination with sample in coherent diffraction imaging.

    图 4  采样间隔为3时, 衍射光斑与探测器靶面像元分布示意图

    Fig. 4.  Diagram of diffraction pattern and detector target surface pixel plane undersampling (sampling interval of 3).

    图 5  (a)照明光的频谱分布; (b)样品和照明光频谱交叠计算的示意图; (c)所记录的其中一组衍射光斑; (d)重建出的样品频谱分布; (e)和(f)分别为重建样品振幅和相位; (g)—(i)在探测器左上角($ \text{11×11} $个像素)中不同采样间隔条件下探测器像元分布, 其采样间隔分别为1, 2, 11

    Fig. 5.  (a) Spectrum of illumination; (b) diagram of overlapping calculation in sample and illumination spectrum; (c) one of recorded diffraction patterns; (d) distribution of recovered sample spectrum; (e) amplitude and (f) phase of recovered sample; (g)–(i) distribution of pixels on top left corner of detector ($ \text{11×11} $ pixels) with sampling intervals of 1, 2, 11, respectively.

    图 6  衍射光斑分布与探测器像元尺寸示意图(Q = 2)

    Fig. 6.  Diagram of diffraction pattern and detector pixel size (Q = 2).

    图 7  (a)理想采样时记录的衍射光斑; (b)发生欠采样时记录的衍射光斑; (c)和(d)分别为理想采样数据重建出的待测样品振幅和相位; (e)和(f)分别为欠采样数据重建出的待测样品振幅和相位

    Fig. 7.  (a) Diffraction patterns with optimal sampling recording; (b) diffraction patterns with undersampling recording; (c) amplitude and (d) phase of recovered sample from optimal sampling data; (e) amplitude and (f) phase of recovered sample from undersampling data.

    图 8  衍射光斑分布与探测器靶面宽度示意图

    Fig. 8.  Diagram of diffraction pattern and width of detector target surface.

    图 9  (a)探测器靶面上其中一个衍射光斑; (b)探测器所记录的其中一个衍射光斑; (c)待测样品的频谱分布; (d)重建出的样品频谱分布; (e)和(f)分别为重建出的样品振幅和相位; (g)和(h)分别为重建结果与原始分布的振幅和相位差(单位: rad)

    Fig. 9.  (a) One of diffraction patterns on detector target surface; (b) one of diffraction patterns recorded by the detector; (c) initial spectrum of sample; (d) recovered spectrum of sample; (e) amplitude and (f) phase of recovered sample; differences of (g) amplitude and (h) phase between recovered results and initial distribution (unit: rad).

    图 10  (a)数值模拟中的样品频谱分布; (b)所记录的其中一组衍射光斑; (c)重建出的样品频谱分布; (d)重建出的样品振幅; (e)重建相位与原始相位的相位差(单位: rad). 其中, (e1), (e2)和(e4)使用有效频谱宽度为11×11个像素的照明光照明, (e3)使用有效频谱宽度为5×5个像素的照明光照明, 其对应光强及频谱分布分别展示在(a)和(b)中的小插图中. 另外, 在样品频谱(a1)—(a4)中强度较大点之间的距离分别为20, 10, 10, 10 (像素)

    Fig. 10.  (a) Spectrum of sample in numerical simulations; (b) one of recorded diffraction patterns; (c) recovered spectrum of sample; (d) recovered amplitude of sample; (e) differences of phase between recovered and initial (unit: rad). In (a1)–(a4), distances of adjacent extreme points are 20, 10, 10, 10 pixels, respectively. An illumination, adopted in (e1), (e2) and (e4), has a valid spectrum with 11×11 pixels, which are shown in (a) and (b). An illumination, adopted in (e3), has a valid spectrum with 5×5 pixels, which are shown in (a) and (b).

    图 11  (a)当边缘零值区域的宽度(W1)大于$\lambda z{W}_{{\widetilde{\boldsymbol{p}}}'}$时, 探测器所记录的其中一组衍射光斑强度图; (b)当边缘零值区域的宽度(W1)小于$ \lambda z{W}_{{\widetilde{\boldsymbol{p}}}'} $时, 探测器所记录的其中一组衍射光斑强度图; (c)和(e)分别为使用(a)中的数据重建出的振幅和相位分布; (d)和(f)分别使用(b)中的数据重建出的振幅和相位分布

    Fig. 11.  (a) One of diffraction patterns recorded by detector when the width of the invalid region (W1) is larger than $ \lambda z{W}_{{\widetilde{\boldsymbol{p}}}'} $; (b) one of the diffraction patterns recorded by the detector when the width of the invalid region (W1) is smaller than $ \lambda z{W}_{{\widetilde{\boldsymbol{p}}}'} $; (c) amplitude and (e) phase recovered with (a); (d) amplitude and (f) phase recovered with (b).

  • [1]

    Guo Y, Han H Y, Wang L W, Zhu Y R, Gao X W, Yang Z G, Weng X Y, Yan W, Qu J L 2022 Appl. Phys. Lett. 121 023701Google Scholar

    [2]

    Wang Z, Zheng W, Hsu C Y S, Huang Z W 2015 Appl. Phys. Lett. 106 033701Google Scholar

    [3]

    Fiolka R, Shao L, Rego E H, Davidson M W, Gustafsson M G L 2012 Proc. Natl. Acad. Sci. 109 5311Google Scholar

    [4]

    Smith H I 1995 J. Vac. Sci. Technol. B 13 2323Google Scholar

    [5]

    Wu S R, Hwu Y, Margaritondo G 2012 Materials 5 1752Google Scholar

    [6]

    蒋晖, 李爱国 2022 光学学报 42 1134004Google Scholar

    Jiang H, Li A G 2022 Acta Opt. Sin. 42 1134004Google Scholar

    [7]

    Roels J, Aelterman J, Luong H Q, Lippens S, Pizurica A, Saeys Y, Philips W 2018 J. Microsc.-Oxford 271 239Google Scholar

    [8]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [9]

    Fienup J R 1982 Appl. Optics 21 2758Google Scholar

    [10]

    Xu R, Salha S, Raines K S, Jiang H D, Chen C C, Takahashi Y, Kohmura Y, Nishino Y, Song C Y, Ishikawa T, Miao J W 2011 J. Synchrotron Radiat. 18 293Google Scholar

    [11]

    Rau C, Wagner U, Pesic Z, De Fanis A 2011 Phys. Status Solidi A 208 2522Google Scholar

    [12]

    周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼 2020 物理学报 69 034102Google Scholar

    Zhou G Z, Hu Z, Yang S M, Liao K L, Zhou P, Liu K, Hua W Q, Wang Y Z, Bian F G, Wang J 2020 Acta Phys. Sin. 69 034102Google Scholar

    [13]

    Fienup J R, Wackerman C C 1986 J. Opt. Soc. Am. A 3 1897Google Scholar

    [14]

    Faulkner H, Rodenburg J M 2004 Phys. Rev. Lett. 93 023903Google Scholar

    [15]

    Rodenburg J M, Faulkner H 2004 Appl. Phys. Lett. 85 4795Google Scholar

    [16]

    Sha H Z, Cui J Z, Yu R 2022 Sci. Adv. 8 2275Google Scholar

    [17]

    Chen Z, Jiang Y, Shao Y T, Holtz M E, Odstril M, Guizar-Sicairos M, Hanke I, Ganschow S, Schlom D G, Muller D A 2021 Science 372 826Google Scholar

    [18]

    Jiang S W, Guo C F, Bian Z C, Wang R H, Zhu J K, Song P M, Hu P, Hu D, Zhang Z B, Hoshino K, Feng B, Zheng G A 2022 Biosens. Bioelectron. 196 113699Google Scholar

    [19]

    Wang T B, Jiang S W, Song P M, Wang R H, Yang L M, Zhang T, Zheng G A 2023 Biomed. Opt. Express 14 489Google Scholar

    [20]

    Wise A M, Weker J N, Kalirai S, Farmand M, Shapiro D A, Meirer F, Weckhuysen B M 2016 ACS Catal. 6 2178Google Scholar

    [21]

    Claus D, Maiden A M, Zhang F C, Sweeney F G R, Humphry M J, Schluesener H, Rodenburg J M 2012 Opt. Express 20 9911Google Scholar

    [22]

    Cheng B, Zhang X J, Liu C, Zhu J Q 2019 J. Optics-UK 21 065602Google Scholar

    [23]

    Zong B M, Luan J Y, Jiang Z L, Kong Y, Wang S Y, Liu C 2019 Opt. Eng. 58 054102Google Scholar

    [24]

    Dong X, Pan X C, Liu C, Zhu J Q 2019 High Power Laser Sci. 7 03000e48Google Scholar

    [25]

    Humphry M, Kraus B, Hurst A, Maiden A M, Rodenburg J M 2012 Nat. Commun. 3 730Google Scholar

    [26]

    Williams G J, Quiney H M, Dhal B B, Tran C Q, Nugent K A, Peele A G, Paterson D, de Jonge M D 2006 Phys. Rev. Lett. 97 025506Google Scholar

    [27]

    Rodenburg J M, Hurst A C, Cullis A G 2007 Ultramicroscopy 107 227Google Scholar

    [28]

    Lorenzo V, Thomas F, Peter Z, Erwin H 2018 Opt. Lett. 43 543Google Scholar

    [29]

    Xu Y M, Pan X C, Sun M Y, Liu W F, Liu C, Zhu J Q 2022 Photonics Res. 10 1937Google Scholar

    [30]

    Lu C C, Zhou Y, Guo Y X, Jiang S W, Zhang Z B, Zheng G A, Zhong J G 2021 Opt. Express 29 12491Google Scholar

    [31]

    Li M, Bian L H, Zheng G A, Maiden A, Liu Y, Li Y M, Suo J L, Dai Q H, Zhang J 2021 Opt. Lett. 46 1624Google Scholar

    [32]

    Shi Q S, Zhou W Y, Hui W W, Huang K C, Zhao H Y, Tian J G 2018 Opt. Eng. 57 114104Google Scholar

    [33]

    Sinha A, Lee J, Li S, Barbastathis G 2017 Optica 4 1117Google Scholar

    [34]

    He X L, Pan X C, Tao H, Liu C, Zhu J Q 2022 AIP Adv. 12 065225Google Scholar

    [35]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar

    [36]

    Zhang F C, Peterson I, Vila-Comamala J, Berenguer A D F, Bean R, Chen B, Menzel A, Robinson I K, Rodenburg J M 2013 Opt. Express 21 13592Google Scholar

    [37]

    Edo T B, Zhang F C, Rodenburg J M 2010 Proc. SPIE 7729 77291HGoogle Scholar

    [38]

    王磊, 窦健泰, 马骏, 袁操今, 高志山, 魏聪, 张天宇 2017 物理学报 66 094201Google Scholar

    Wang L, Dou J T, Ma J, Yuan C J, Gao Z S, Wei C, Zhang T Y 2017 Acta Phys. Sin. 66 094201Google Scholar

    [39]

    Wan M, Healy J J, Sheridan J T 2020 Opt. Laser. Technol. 122 105859Google Scholar

    [40]

    Liu C, Eschen W, Loetgering L, Molina D S P, Klas R, Iliou A, Steinert M, Herkersdorf S, Kirsche A, Thomas P, Hillmann F, Limpert J, Rothhardt J 2023 PhotoniX 4 1Google Scholar

    [41]

    Thibault P, Menzel A 2013 Nature 494 68Google Scholar

    [42]

    Batey D J, Edo T B, Rau C, Wagner U, Pešić Z D, Waigh T A, Rodenburg J M 2014 Phys. Rev. A 89 043812Google Scholar

    [43]

    Maiden A M, Humphry M J, Zhang F C, Rodenburg J M 2011 J. Opt. Soc. Am. A 28 604Google Scholar

    [44]

    Boyle W S, Smith G E 1970 Bell Labs Tech. J. 49 587Google Scholar

    [45]

    Fossum E R 1997 IEEE T. Electron Dev. 44 1689Google Scholar

    [46]

    Pan X C, Veetil S P, Wang B S, Liu C, Zhu J Q 2015 J. Mod. Optic. 62 1270Google Scholar

  • [1] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] 潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙. 叠层相干衍射成像算法发展综述. 物理学报, 2023, 72(5): 054202. doi: 10.7498/aps.72.20221889
    [3] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [4] 吴迪, 蒋子珍, 喻欢欢, 张晨爽, 张娇, 林丹樱, 于斌, 屈军乐. 基于分数阶螺旋相位片的定量相位显微成像. 物理学报, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [5] 许文慧, 宁守琮, 张福才. 部分相干衍射成像综述. 物理学报, 2021, 70(21): 214201. doi: 10.7498/aps.70.20211020
    [6] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [7] 葛银娟, 潘兴臣, 刘诚, 朱健强. 基于相干调制成像的光学检测技术. 物理学报, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [8] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像. 物理学报, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [9] 李元杰, 何小亮, 孔艳, 王绶玙, 刘诚, 朱健强. 基于电子束剪切干涉的PIE成像技术研究. 物理学报, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [10] 肖俊, 李登宇, 王雅丽, 史祎诗. 并行化叠层成像算法研究. 物理学报, 2016, 65(15): 154203. doi: 10.7498/aps.65.154203
    [11] 余伟, 何小亮, 刘诚, 朱健强. 非相干照明条件下的ptychographic iterative engine成像技术. 物理学报, 2015, 64(24): 244201. doi: 10.7498/aps.64.244201
    [12] 何小亮, 刘诚, 王继成, 王跃科, 高淑梅, 朱健强. PIE成像中周期性重建误差的研究. 物理学报, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [13] 杨振亚, 郑楚君. 基于压缩传感的纯相位物体相位恢复. 物理学报, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [14] 王雅丽, 史祎诗, 李拓, 高乾坤, 肖俊, 张三国. 可见光域叠层成像中照明光束的关键参量研究. 物理学报, 2013, 62(6): 064206. doi: 10.7498/aps.62.064206
    [15] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [16] 邬融, 华能, 张晓波, 曹国威, 赵东峰, 周申蕾. 高能量效率的大口径多台阶衍射光学元件. 物理学报, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [17] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用. 物理学报, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [18] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像. 物理学报, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [19] 黄燕萍, 祁春媛. 用相位恢复方法测量多孔光纤的三维折射率分布. 物理学报, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复. 物理学报, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
计量
  • 文章访问数:  2531
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-14
  • 修回日期:  2023-05-31
  • 上网日期:  2023-06-06
  • 刊出日期:  2023-08-05

/

返回文章
返回