搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非相干照明条件下的ptychographic iterative engine成像技术

余伟 何小亮 刘诚 朱健强

引用本文:
Citation:

非相干照明条件下的ptychographic iterative engine成像技术

余伟, 何小亮, 刘诚, 朱健强

Ptychographic iterative engine with the incoherent illumination

Yu Wei, He Xiao-Liang, Liu-Cheng, Zhu Jian-Qiang
PDF
导出引用
  • 在传统多波长相干衍射成像理论的基础上提出适用于 X-射线和电子束等非相干光源照明成像的改进多波长ptychographic iterative engine 方法, 同时将小孔形状和照明光谱信息用于叠代计算, 可以在非相干照明条件下精确重建出物体的强度透射像和相位透射像, 并对光源带宽对重建精度的影响进行了分析, 对于解决如何在非相干照明条件下对大尺寸物体进行精确相位成像的问题具有较好的科研和实用价值.
    Ptychographic iterative engine (PIE) is an ideal phase microscopic method for imaging with short wavelength including X-ray and electron beam. The traditional PIE algorithm requires a purely coherent illumination. Since the coherencies of X-ray and electron beam are always much lower than coherency of the laser, it is greatly important to develop new algorithm for enhancing the capability of PIE in handling the incoherence of the illumination. A method, named polyCDI (coherent diffraction imaging), which can generate clear reconstruction with the illumination of partial coherency, was proposed recently, however due to the use of tiny pinhole in the data acquisition the view field of the reconstructed image is limited. The polyPIE algorithm, which combines the principles of polyCDI with PIE, can realize the imaging of large object with partially coherent illumination. In this paper, an improved polyPIE algorithm is developed to realize the high-resolution phase imaging under incoherent illumination by bringing the shape of the illuminating pinhole and the spectral distribution of the light source into the iterative computation. The image of the object and the illuminating probe are reconstructed for each spectral component, and the shape of the pinhole forming the illumination is used as the same spatial constraint for all the reconstructed probes on the pinhole plane. With this method a very high convergence speed and reconstruction accuracy as well as a wide view field can be achieved. This method can find many applications in the imaging with X-ray and electron beam, which are of low coherence in most of cases. The influence of the spectral width on reconstruction accuracy is also analyzed by imaging the object with illuminations of different spectral widths. It is found that the improved polyPIE algorithm can accurately reconstruct the phase and modulus images of the object when the width of the incoherent illuminating source is smaller than 10% of the central wavelength, otherwise, the convergence speed and reconstruction accuracy will become remarkably lower. By bringing the shape of the pinhole into the iterative computation, the relevance of the reconstructed illuminating probes of different spectral components is used and accordingly the reconstruction speed can be obviously accelerated. The feasibility of this suggested method is verified by a series of numerical simulations.
      通信作者: 刘诚, cheng.liu@hotmail.co.uk
    • 基金项目: 江苏省自然科学基金(批准号: BK2012548)和江南大学校基金资助的课题.
      Corresponding author: Liu-Cheng, cheng.liu@hotmail.co.uk
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012548) and the Funds from Jiannan Univeristy, China.
    [1]

    Fienup J R 1982 Appl. Opt. 21 2578

    [2]

    Williams G J, Quiney H M, Dhal B B, Tran C Q, Nugent K A, Peele A G, Paterson D, de Jonge M D 2006 Phys. Rev. Lett. 97 025506

    [3]

    Miao J, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342

    [4]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795

    [5]

    Faulkner H M A, Rodenburg J M 2004 Phys. Rev. Lett. 93 023903

    [6]

    Elser V 2003 Opt. Soc. Am. A 20 40

    [7]

    Maiden M A, Rodenburg J M 2009 Ultramicroscopy 109 1256

    [8]

    Claus D, Maiden M A, Zhang F, Sweeney F, Humphry M, Rodenburg J 2011 SPIE 8001 800109

    [9]

    Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801

    [10]

    Rodenburg J M 2008 Adv. Imaging. Electron. Phys. 150 87

    [11]

    Fienup J R 1978 Opt. Lett. 31 27

    [12]

    Spence C H, Weierstall U, Howells M 2004 Ultramicroscopy 101 149

    [13]

    Liu C, Pan X C, Zhu J Q 2013 Acta Phys. Sin. 62 184204 (in Chinese) [刘诚, 潘星辰, 朱健强 2013 物理学报 62 184204]

    [14]

    He J, Liu C, Gao S M, Wang J C, Wang Y K, Zhu J Q 2014 Acta Opt. Sin. 34 0511008 (in Chinese) [何靖, 刘诚, 高淑梅, 王继成, 王跃科, 朱健强 2014 光学学报 34 0511008]

    [15]

    Abbey B, Whitehead L W, Quiney H M, Vine D J, Cadenazzi G A, Henderson C A, Nugent K A, Balaur E, Putkunz C T, Peele A G, Williams G J, Mcnulty I 2011 Nat. Photon. 5 420

    [16]

    Wang Y X, Yun W B, Jacobsen C 2003 Nature 424 50

    [17]

    Thibault P, Menzel A 2013 Nature 494 68

    [18]

    Claus D, Robinson D J, Chetwynd D G, Shuo Y, Pike W T, Garcia J, Rodenburg J M 2013 J. Opt. 15 035702

  • [1]

    Fienup J R 1982 Appl. Opt. 21 2578

    [2]

    Williams G J, Quiney H M, Dhal B B, Tran C Q, Nugent K A, Peele A G, Paterson D, de Jonge M D 2006 Phys. Rev. Lett. 97 025506

    [3]

    Miao J, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342

    [4]

    Rodenburg J M, Faulkner H M L 2004 Appl. Phys. Lett. 85 4795

    [5]

    Faulkner H M A, Rodenburg J M 2004 Phys. Rev. Lett. 93 023903

    [6]

    Elser V 2003 Opt. Soc. Am. A 20 40

    [7]

    Maiden M A, Rodenburg J M 2009 Ultramicroscopy 109 1256

    [8]

    Claus D, Maiden M A, Zhang F, Sweeney F, Humphry M, Rodenburg J 2011 SPIE 8001 800109

    [9]

    Rodenburg J M, Hurst A C, Cullis A G, Dobson B R, Pfeiffer F, Bunk O, David C, Jefimovs K, Johnson I 2007 Phys. Rev. Lett. 98 034801

    [10]

    Rodenburg J M 2008 Adv. Imaging. Electron. Phys. 150 87

    [11]

    Fienup J R 1978 Opt. Lett. 31 27

    [12]

    Spence C H, Weierstall U, Howells M 2004 Ultramicroscopy 101 149

    [13]

    Liu C, Pan X C, Zhu J Q 2013 Acta Phys. Sin. 62 184204 (in Chinese) [刘诚, 潘星辰, 朱健强 2013 物理学报 62 184204]

    [14]

    He J, Liu C, Gao S M, Wang J C, Wang Y K, Zhu J Q 2014 Acta Opt. Sin. 34 0511008 (in Chinese) [何靖, 刘诚, 高淑梅, 王继成, 王跃科, 朱健强 2014 光学学报 34 0511008]

    [15]

    Abbey B, Whitehead L W, Quiney H M, Vine D J, Cadenazzi G A, Henderson C A, Nugent K A, Balaur E, Putkunz C T, Peele A G, Williams G J, Mcnulty I 2011 Nat. Photon. 5 420

    [16]

    Wang Y X, Yun W B, Jacobsen C 2003 Nature 424 50

    [17]

    Thibault P, Menzel A 2013 Nature 494 68

    [18]

    Claus D, Robinson D J, Chetwynd D G, Shuo Y, Pike W T, Garcia J, Rodenburg J M 2013 J. Opt. 15 035702

  • [1] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像. 物理学报, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] 王子硕, 刘磊, 刘晨博, 刘珂, 钟志, 单明广. 数字差分-积分快速相位解包裹算法研究. 物理学报, 2023, 72(18): 184201. doi: 10.7498/aps.72.20230473
    [3] 齐乃杰, 何小亮, 吴丽青, 刘诚, 朱健强. 探测器光电特性对叠层相干衍射成像的影响. 物理学报, 2023, 72(15): 154202. doi: 10.7498/aps.72.20230603
    [4] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [5] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [6] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211509
    [7] 吴迪, 蒋子珍, 喻欢欢, 张晨爽, 张娇, 林丹樱, 于斌, 屈军乐. 基于分数阶螺旋相位片的定量相位显微成像. 物理学报, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [8] 许文慧, 宁守琮, 张福才. 部分相干衍射成像综述. 物理学报, 2021, 70(21): 214201. doi: 10.7498/aps.70.20211020
    [9] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [10] 葛银娟, 潘兴臣, 刘诚, 朱健强. 基于相干调制成像的光学检测技术. 物理学报, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [11] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像. 物理学报, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [12] 李元杰, 何小亮, 孔艳, 王绶玙, 刘诚, 朱健强. 基于电子束剪切干涉的PIE成像技术研究. 物理学报, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [13] 肖俊, 李登宇, 王雅丽, 史祎诗. 并行化叠层成像算法研究. 物理学报, 2016, 65(15): 154203. doi: 10.7498/aps.65.154203
    [14] 何小亮, 刘诚, 王继成, 王跃科, 高淑梅, 朱健强. PIE成像中周期性重建误差的研究. 物理学报, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [15] 刘宏展, 纪越峰. 一种基于角谱理论的改进型相位恢复迭代算法. 物理学报, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [16] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [17] 邬融, 华能, 张晓波, 曹国威, 赵东峰, 周申蕾. 高能量效率的大口径多台阶衍射光学元件. 物理学报, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [18] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用. 物理学报, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [19] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像. 物理学报, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [20] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复. 物理学报, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
计量
  • 文章访问数:  7603
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-05
  • 修回日期:  2015-08-17
  • 刊出日期:  2015-12-05

/

返回文章
返回