搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光在Metasurface中的自旋-轨道相互作用

易煦农 李瑛 凌晓辉 张志友 范滇元

引用本文:
Citation:

光在Metasurface中的自旋-轨道相互作用

易煦农, 李瑛, 凌晓辉, 张志友, 范滇元

Spin-orbit interaction of light in metasuface

Yi Xu-Nong, Li Ying, Ling Xiao-Hui, Zhang Zhi-You, Fan Dian-Yuan
PDF
导出引用
  • 探讨了光在Metasurface中的自旋-轨道相互作用, 理论分析了Metasurface 对圆偏振和线偏振光的转换. 结果表明: 光与具有空间非均匀性和各向异性性的Metasurface的相互作用导致了自旋-轨道角动量的耦合. 采用Metasurface与螺旋相位片组合在一起进行了验证实验, 所得实验结果与理论分析完全一致. 这些结论有助于我们更加深入理解Metasurface 对光的操控.
    Spin-orbit interaction of light in metasurface is investigated in this paper. We theoretically analyze the transfromation of circularly and linearly polarized light by metasurface with Jones matrix. The results indicate that the interaction of light with spatially inhomogeneous and anisotropic metasurface leads to a coupling of spin-orbital angular momentum. The nanostructrues of metasurfaces are arranged at a definite rate of rotation, which induces an additional space-variant geometrical phase (i.e., Pancharatnam-Berry phase). The Pancharatnam-Berry phase is dependent on the polarization handedness of the incident wave. This characteristic can result in spin-dependent split. A left/right-circular polarized beam is transfromed into a right/left-circular polarized vortex beam by the metasurfaces. In the convertion process, the sign of spin angular momentum of photons is inversed. At the same time, each photon can acquire orbital angular momentum from the inhomogeneous and anisotropic media. The case that a linearly polarized beam inputs the metasurfaces also is considered. A linearly polarized wave can be regarded as the linear superposition of left-circular and right-circular polarized wave. The two circularly plarized components are respectively converted into circularly polarized vortex beam with reverse polarization handedness. The coherent superposition of the two output components forms a cylindrical vector beam. Finally, we adopt the combination of a metasurface and spiral phase plate to verify the theoretical results. The vortex phase can be eliminated by the spiral phase plate when a left-circular polarized light is input, while topological charge of vortex phase will increase when a right-circular polarized light is input. For the case of inputting linearly polarized beam, one of the two outputing circularly polarized components can be eliminated by the helical phase through using the spiral phase plate, while the topological charge of another component increases. It results in the fact that the intensity pattern splits into two parts. The central part does not have helical phase, while the ambient ring-shaped intensity has helical phase. In order to judge the polarization handedness of output wave, the Stokes parameter S3 is measured by inserting a Glan laser polarizer and a quarter wave plate behind the spiral phase plate. The experimental results are in good agreement with theoretical analyses. These results are helpful for understanding the manipulation of light with metasurface.
      通信作者: 李瑛, queenly@vip.sina.com
    • 基金项目: 国家自然科学基金重大项目(批准号: 61490713)和湖北省教育厅科学研究项目(批准号: Q20132703)资助的课题.
      Corresponding author: Li Ying, queenly@vip.sina.com
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 61490713) and the Foundation of Hubei Educational Committee, China (Grant No. Q20132703).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905

    [3]

    Zhao Y, Edgar J S, Jeffries G D M, McGloin D, Chiu D T 2007 Phys. Rev. Lett. 99 073901

    [4]

    Luo H, Ren Z, Shu W, Li F 2007 Appl. Phys. A 87 245

    [5]

    Li L, Wang J, Du H, Wang J, Qu S 2015 Chin. Phys. B 24 064201

    [6]

    Yu N, Capasso F 2014 Nature Mater. 13 139

    [7]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1289

    [8]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2001 Opt. Lett. 26 33

    [9]

    Niv A, Biener G, Kleiner V, Hasman E 2003 Opt. Lett. 28 510

    [10]

    Niv A, Biener G, Kleiner V, Hasman E 2005 Opt. Lett. 30 2933

    [11]

    Brasselet E, Gervinskas G, Seniutinas G, Juodkazis S 2013 Phys. Rev. Lett. 111 193901

    [12]

    Kang M, Guo Q, Chen J, Gu B, Li Y, Wang H 2011 Phys. Rev. A 84 045803

    [13]

    Kang M, Chen J, Wang X, Wang H 2012 J. Opt. Soc. Am. B 29 572

    [14]

    Wang X, Ding J, Ni W, Guo C, Wang H 2007 Opt. Lett. 32 3549

    [15]

    Cai Y, Lin Q, Eyyuboğlu H T, Baykal Y 2008 Opt. Express 16 7665

    [16]

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁攀峰, 蒲继雄 2011 物理学报 60 094204]

    [17]

    Dai H, Liu Y, Luo D, Sun X 2011 Opt. Lett. 36 1617

    [18]

    Chen H, Hao J, Zhang B, Xu J, Ding J, Wang H 2011 Opt. Lett. 36 3137

    [19]

    Deng D, Chen C, Zhao X 2012 Appl. Phys. B 110 433

    [20]

    Qian X, Zhu W, Rao R 2015 Chin. Phys. B 24 044201

    [21]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1

    [22]

    Wang Z, Zhang N, Yuan X 2011 Opt. Express 19 482

    [23]

    Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101

    [24]

    Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110

    [25]

    Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207

    [26]

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203]

    [27]

    Ling X, Yi X, Zhou X, Liu Y, Shu W, Luo H, Wen S 2014 Appl. Phys. Lett. 105 151101

    [28]

    Milione G, Sztul H I, Nolan D A, Alfano R R 2011 Phys. Rev. Lett. 98 053601

    [29]

    Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801

    [30]

    Niv A, Gorodetski Y, Kleiner V, Hasman E 2008 Opt. Lett. 33 2910

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185

    [2]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905

    [3]

    Zhao Y, Edgar J S, Jeffries G D M, McGloin D, Chiu D T 2007 Phys. Rev. Lett. 99 073901

    [4]

    Luo H, Ren Z, Shu W, Li F 2007 Appl. Phys. A 87 245

    [5]

    Li L, Wang J, Du H, Wang J, Qu S 2015 Chin. Phys. B 24 064201

    [6]

    Yu N, Capasso F 2014 Nature Mater. 13 139

    [7]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1289

    [8]

    Bomzon Z, Biener G, Kleiner V, Hasman E 2001 Opt. Lett. 26 33

    [9]

    Niv A, Biener G, Kleiner V, Hasman E 2003 Opt. Lett. 28 510

    [10]

    Niv A, Biener G, Kleiner V, Hasman E 2005 Opt. Lett. 30 2933

    [11]

    Brasselet E, Gervinskas G, Seniutinas G, Juodkazis S 2013 Phys. Rev. Lett. 111 193901

    [12]

    Kang M, Guo Q, Chen J, Gu B, Li Y, Wang H 2011 Phys. Rev. A 84 045803

    [13]

    Kang M, Chen J, Wang X, Wang H 2012 J. Opt. Soc. Am. B 29 572

    [14]

    Wang X, Ding J, Ni W, Guo C, Wang H 2007 Opt. Lett. 32 3549

    [15]

    Cai Y, Lin Q, Eyyuboğlu H T, Baykal Y 2008 Opt. Express 16 7665

    [16]

    Ding P F, Pu J X 2011 Acta Phys. Sin. 60 094204 (in Chinese) [丁攀峰, 蒲继雄 2011 物理学报 60 094204]

    [17]

    Dai H, Liu Y, Luo D, Sun X 2011 Opt. Lett. 36 1617

    [18]

    Chen H, Hao J, Zhang B, Xu J, Ding J, Wang H 2011 Opt. Lett. 36 3137

    [19]

    Deng D, Chen C, Zhao X 2012 Appl. Phys. B 110 433

    [20]

    Qian X, Zhu W, Rao R 2015 Chin. Phys. B 24 044201

    [21]

    Zhan Q W 2009 Adv. Opt. Photon. 1 1

    [22]

    Wang Z, Zhang N, Yuan X 2011 Opt. Express 19 482

    [23]

    Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101

    [24]

    Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110

    [25]

    Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H, Wen S 2014 Opt. Express 22 17207

    [26]

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203]

    [27]

    Ling X, Yi X, Zhou X, Liu Y, Shu W, Luo H, Wen S 2014 Appl. Phys. Lett. 105 151101

    [28]

    Milione G, Sztul H I, Nolan D A, Alfano R R 2011 Phys. Rev. Lett. 98 053601

    [29]

    Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S, Fan D 2015 Phys. Rev. A 91 023801

    [30]

    Niv A, Gorodetski Y, Kleiner V, Hasman E 2008 Opt. Lett. 33 2910

  • [1] 范海玲, 郭志坚, 李明强, 卓红斌. 等离子体中涡旋光束自聚焦与成丝现象的模拟研究. 物理学报, 2023, 72(1): 014206. doi: 10.7498/aps.72.20221232
    [2] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [3] 白占斌, 王锐, 周亚洲, 吴天如, 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋-轨道相互作用. 物理学报, 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [4] 范钰婷, 朱恩旭, 赵超樱, 谭维翰. 基于电光晶体平板部分相位调制动态产生涡旋光束. 物理学报, 2022, 71(20): 207801. doi: 10.7498/aps.71.20220835
    [5] 朱雪松, 刘星雨, 张岩. 涡旋光束在双拉盖尔-高斯旋转腔中的非互易传输. 物理学报, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [6] 田博宇, 钟哲强, 隋展, 张彬, 袁孝. 基于涡旋光束的超快速角向集束匀滑方案. 物理学报, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [7] 彭一鸣, 薛煜, 肖光宗, 于涛, 谢文科, 夏辉, 刘爽, 陈欣, 陈芳琳, 孙学成. 相干合成涡旋光束的螺旋谱分析及应用研究. 物理学报, 2019, 68(21): 214206. doi: 10.7498/aps.68.20190880
    [8] 于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣. 贝塞尔-高斯涡旋光束相干合成研究. 物理学报, 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [9] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展. 物理学报, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [10] 施建珍, 许田, 周巧巧, 纪宪明, 印建平. 用波晶片相位板产生角动量可调的无衍射涡旋空心光束. 物理学报, 2015, 64(23): 234209. doi: 10.7498/aps.64.234209
    [11] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [12] 施建珍, 杨深, 邹亚琪, 纪宪明, 印建平. 用四台阶相位板产生涡旋光束. 物理学报, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [13] 周巧巧, 施建珍, 纪宪明, 印建平. 用弧形波晶片产生矢量光束及其强聚焦的特性研究. 物理学报, 2015, 64(5): 053702. doi: 10.7498/aps.64.053702
    [14] 王林, 袁操今, 聂守平, 李重光, 张慧力, 赵应春, 张秀英, 冯少彤. 数字全息术测定涡旋光束拓扑电荷数. 物理学报, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [15] 黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云. 多环涡旋光束的实验研究. 物理学报, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [16] 张进, 周新星, 罗海陆, 文双春. 涡旋光束在反射中的正交偏振特性研究. 物理学报, 2013, 62(17): 174202. doi: 10.7498/aps.62.174202
    [17] 丁攀峰, 蒲继雄. 离轴拉盖尔-高斯涡旋光束传输中的光斑演变. 物理学报, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [18] 王铮, 高春清, 辛璟焘. 高阶矢量光束高数值孔径聚焦特性的研究. 物理学报, 2012, 61(12): 124209. doi: 10.7498/aps.61.124209
    [19] 丁攀峰, 蒲继雄. 拉盖尔高斯涡旋光束的传输. 物理学报, 2011, 60(9): 094204. doi: 10.7498/aps.60.094204
    [20] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉. 物理学报, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
计量
  • 文章访问数:  5457
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-03
  • 修回日期:  2015-08-17
  • 刊出日期:  2015-12-05

/

返回文章
返回