搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InSb芯片碎裂与迸溅金点的关系

张江风 田笑含 张晓玲 孟庆端

引用本文:
Citation:

InSb芯片碎裂与迸溅金点的关系

张江风, 田笑含, 张晓玲, 孟庆端

Splashed gold bump dependence of cleavage of InSb chip under cyclic liquid nitrogen shocking tests

Zhang Jiang-Feng, Tian Xiao-Han, Zhang Xiao-Ling, Meng Qing-Duan
PDF
HTML
导出引用
  • 批量生产中经常发生的锑化铟(InSb)芯片碎裂问题制约着InSb红外焦平面探测器(IRFPAs)成品率的提升. 经分析认为: 低周期液氮冲击下发生在器件边沿区域的InSb芯片破碎与该区域中迸溅金点的存在有关. 为从理论上明晰迸溅金点对InSb芯片局部碎裂的影响, 本文建立了包含迸溅金点的InSb IRFPAs结构模型, 分析了迸溅金点的存在对应力分布的影响. 在此基础上, 在应力集中处预置不同长度的初始裂纹用以描述InSb晶片中的位错, 以能量释放率为判据, 探究InSb芯片碎裂与迸溅金点和位错线长短的关系. 结论如下: 1) 迸溅金点的存在对InSb芯片碎裂的影响是局部的, 在迸溅金点与InSb芯片接触区域的两侧会形成两个应力集中点; 2) 环绕预置裂纹的能量释放率会随着预置裂纹长度的增加而加速增大, 当预置裂纹长度接近InSb芯片上表面时, 能量释放率近乎指数增加, 并在预置裂纹贯穿InSb芯片时达到最大值; 3) 迸溅金点引起的InSb芯片破碎属于I型断裂失效模式, 在多周期液氮冲击中, 位错线在应力集中效应的驱使下逐步扩展, 直至贯穿InSb芯片, 最终形成宏观碎裂失效现象.
    Local cleavage of indium antimonide (InSb) chip always occurs in the manufacture of the InSb infrared focal plane detectors (IRFPAs), and this specific fracture phenomenon restricts the improvement of the yield of the InSb IRFPAs. After analysis, we think that the cleavage of InSb chip in the edge region of the InSb IRFPAs is related to the splashed gold bump existing in this region, and this failure phenomenon dominates in the low-cyclic liquid nitrogen shocking tests. In order to clarify the influence of the splashed gold bump on the cleavage of the InSb chip, we establish a structural model of the InSb IRFPAs containing the splashed gold bump, and analyze the influence of the splashed gold bump on the thermal stress distribution in the InSb chip. Besides, we preset the initial cracks with different lengths at the stress concentration sites to describe the dislocations in InSb wafers. Using the energy release rate as criterion, we obtain the relationship between the cleavage of the InSb chip and the dislocation line length in the presence of splashed gold bump. The main conclusions are drawn as follows. 1) The influence of the splashed gold bump on the cleavage of the InSb chip is localized, and two stress concentration sites are formed in the outermost part of the contact region between the splashed gold bump and the InSb chip. 2) The energy release rate surrounding the preset crack increases promptly with the preset crack length increasing. 3) Cleavage of the InSb chip caused by the splashed gold bump belongs to the type I fracture failure mode. In the cyclic liquid nitrogen shocking tests, the dislocation line gradually punches through the InSb chip under the driving of the concentrating stress, and forms the macro cleavage of the InSb chip.
      通信作者: 孟庆端, qdmengly@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61505048)、河南省高等学校重点科研项目(批准号: 19A510012)和河南省自然科学基金(批准号: 202300410157)资助的课题
      Corresponding author: Meng Qing-Duan, qdmengly@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61505048), the Key Scientific Research Projects of Higher Education Institutions in Henan Province, China (Grant No. 19A510012), and the Natural Science Foundation of Henan Province, China (Grant No. 202300410157).
    [1]

    吕衍秋, 鲁星, 鲁正雄, 李墨 2020 航空兵器 27 1Google Scholar

    Lv Y Q, Lu X, Lu Z X, Li M 2020 Aero Weaponry 27 1Google Scholar

    [2]

    Rogalski A 2011 Infrared Phys. Technol. 54 136Google Scholar

    [3]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [4]

    Bhan R K, Dhar V 2019 Opto-Electron. Rev. 27 174Google Scholar

    [5]

    罗宏 2010 激光与红外 40 720Google Scholar

    Luo H 2010 Laser & Infrared 40 720Google Scholar

    [6]

    Meng Q D, Zhang X L, Lv Y Q, Si J J 2019 Opt. Quantum Electron. 51 1Google Scholar

    [7]

    Meng Q D, Zhang X L, Lv Y Q, Si J J 2017 Opt. Quantum Electron. 49 211Google Scholar

    [8]

    Hao L C, Huang A B, Lai C X, Chen X, Hao M M, Chen H L, Lu G G, Huang Y, En Y F 2015 Aopc: Optical & Optoelectronic Sensing & Imaging Technology Beijing, China, May 5−7, 2015 96740H-1

    [9]

    秦朗 2014 硕士学位论文 (辽宁: 大连理工大学)

    Qin L 2014 M. S. Thesis (Liaoning: Dalian University of Technology) (in Chinese)

    [10]

    巩锋, 程鹏, 吴卿, 折伟林, 陈元瑞 2013 激光与红外 43 1146Google Scholar

    Gong F, Cheng P, Wu Q, She W L, Chen Y R 2013 Laser & Infrared 43 1146Google Scholar

    [11]

    柏伟, 庞新义, 赵超 2018 红外 39 8Google Scholar

    Bai W, Pang X Y, Zhao C 2018 Infrared 39 8Google Scholar

    [12]

    Rybicki E F, Kanninen M F 1977 Eng. Fract. Mech. 9 931Google Scholar

    [13]

    Irwin G R 1956 Sagamore Res. Conf. Proc. 2 289

    [14]

    Zhang X L, Meng Q D, Lv Y Q, Si J J 2017 Infrared Phys. Technol. 86 207Google Scholar

    [15]

    Zhang L W, Meng Q D, Zhang X L, Yu Q, Lv Y Q, Si J J 2013 Infrared Phys. Technol. 60 29Google Scholar

    [16]

    Zhang L W, Meng Q D, Zhang X L, Lv Y Q 2014 J. Mech. Sci. Technol. 28 2281Google Scholar

    [17]

    Liu X H, Suo Z, Ma Q, Fujimoto H 2000 Eng. Fract. Mech. 66 387Google Scholar

  • 图 1  InSb面阵探测器制备工艺具体流程

    Fig. 1.  Specific fabricating processes of InSb IRFPAs.

    图 2  线性虚拟裂纹闭合技术原理

    Fig. 2.  Principle of virtual crack closure technique for linear crack.

    图 3  InSb面阵探测器的二维有限元模型

    Fig. 3.  Two-dimensional finite element model for InSb IRFPAs.

    图 4  迸溅金点存在与否情况下InSb芯片下表面的面内正应力分布

    Fig. 4.  Distributions of the in-plane normal stress in bottom surface of InSb chip with splashed gold bump or not.

    图 5  不同裂纹扩展长度下InSb芯片中能量释放率的演化过程

    Fig. 5.  Evolution process of energy release rate in InSb chip under different crack propagation lengths.

    表 1  InSb IRFPAs模型的相关材料参数

    Table 1.  Material parameters of InSb IRFPAs model.

    MaterialsElastic modulus
    E/GPa
    Poison’s
    ratio μ
    Temperatures
    T/K
    InSb chip409 (in plane)0.350077–300
    123 (out of plane)
    Underfill0.0002/α0.300077–300
    silicon ROIC1630.280077–300
    Indium bump20.540.432676
    16.240.4408187
    12.700.4498370
    Negative electrode790.440077–300
    注: $ \alpha = 22.46 \times {10^{ - 6}} + 5.04 \times {10^{ - 8}} \times {\text{(}}T-273{\text{)}} $, 其中 T 是Kelvin温度.
    下载: 导出CSV
  • [1]

    吕衍秋, 鲁星, 鲁正雄, 李墨 2020 航空兵器 27 1Google Scholar

    Lv Y Q, Lu X, Lu Z X, Li M 2020 Aero Weaponry 27 1Google Scholar

    [2]

    Rogalski A 2011 Infrared Phys. Technol. 54 136Google Scholar

    [3]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [4]

    Bhan R K, Dhar V 2019 Opto-Electron. Rev. 27 174Google Scholar

    [5]

    罗宏 2010 激光与红外 40 720Google Scholar

    Luo H 2010 Laser & Infrared 40 720Google Scholar

    [6]

    Meng Q D, Zhang X L, Lv Y Q, Si J J 2019 Opt. Quantum Electron. 51 1Google Scholar

    [7]

    Meng Q D, Zhang X L, Lv Y Q, Si J J 2017 Opt. Quantum Electron. 49 211Google Scholar

    [8]

    Hao L C, Huang A B, Lai C X, Chen X, Hao M M, Chen H L, Lu G G, Huang Y, En Y F 2015 Aopc: Optical & Optoelectronic Sensing & Imaging Technology Beijing, China, May 5−7, 2015 96740H-1

    [9]

    秦朗 2014 硕士学位论文 (辽宁: 大连理工大学)

    Qin L 2014 M. S. Thesis (Liaoning: Dalian University of Technology) (in Chinese)

    [10]

    巩锋, 程鹏, 吴卿, 折伟林, 陈元瑞 2013 激光与红外 43 1146Google Scholar

    Gong F, Cheng P, Wu Q, She W L, Chen Y R 2013 Laser & Infrared 43 1146Google Scholar

    [11]

    柏伟, 庞新义, 赵超 2018 红外 39 8Google Scholar

    Bai W, Pang X Y, Zhao C 2018 Infrared 39 8Google Scholar

    [12]

    Rybicki E F, Kanninen M F 1977 Eng. Fract. Mech. 9 931Google Scholar

    [13]

    Irwin G R 1956 Sagamore Res. Conf. Proc. 2 289

    [14]

    Zhang X L, Meng Q D, Lv Y Q, Si J J 2017 Infrared Phys. Technol. 86 207Google Scholar

    [15]

    Zhang L W, Meng Q D, Zhang X L, Yu Q, Lv Y Q, Si J J 2013 Infrared Phys. Technol. 60 29Google Scholar

    [16]

    Zhang L W, Meng Q D, Zhang X L, Lv Y Q 2014 J. Mech. Sci. Technol. 28 2281Google Scholar

    [17]

    Liu X H, Suo Z, Ma Q, Fujimoto H 2000 Eng. Fract. Mech. 66 387Google Scholar

  • [1] 张江风, 田笑含, 张晓玲, 孟庆端. InSb芯片碎裂与迸溅金点关系研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211535
    [2] 刘珂, 马文全, 黄建亮, 张艳华, 曹玉莲, 黄文军, 赵成城. 含有AlGaAs插入层的InAs/GaAs三色量子点红外探测器. 物理学报, 2016, 65(10): 108502. doi: 10.7498/aps.65.108502
    [3] 董刚, 刘荡, 石涛, 杨银堂. 多个硅通孔引起的热应力对迁移率和阻止区的影响. 物理学报, 2015, 64(17): 176601. doi: 10.7498/aps.64.176601
    [4] 周彦平, 黎发军, 车驰, 谭立英, 冉启文, 于思源, 马晶. 量子点红外探测器在空间光电系统中的应用. 物理学报, 2014, 63(14): 148501. doi: 10.7498/aps.63.148501
    [5] 张晓玲, 孟庆端, 张立文, 耿东峰, 吕衍秋. 液氮冲击中锑化铟焦平面探测器形变研究. 物理学报, 2014, 63(15): 156101. doi: 10.7498/aps.63.156101
    [6] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征. 物理学报, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [7] 岑兆丰, 李晓彤. 热应力双折射介质中的光传输研究. 物理学报, 2010, 59(8): 5784-5790. doi: 10.7498/aps.59.5784
    [8] 周旺民, 蔡承宇, 王崇愚, 尹姝媛. 埋置量子点应力分布的有限元分析. 物理学报, 2009, 58(8): 5585-5590. doi: 10.7498/aps.58.5585
    [9] 陈为兰, 顾培夫, 王 颖, 章岳光, 刘 旭. 红外薄膜中热应力的研究. 物理学报, 2008, 57(7): 4316-4321. doi: 10.7498/aps.57.4316
    [10] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [11] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [12] 周旭昌, 陈效双, 甄红楼, 陆 卫. 空穴在动量空间分布对p型量子阱红外探测器响应光谱的影响. 物理学报, 2006, 55(8): 4247-4252. doi: 10.7498/aps.55.4247
    [13] 黄靖云, 叶志镇, 阙端麟. Si1-xGex/Si异质结构中热应力对临界厚度的影响. 物理学报, 1997, 46(10): 2010-2014. doi: 10.7498/aps.46.2010
    [14] 顾绍庭, 张国轩, 黄国松. 玻璃板条激光器的热应力. 物理学报, 1991, 40(3): 399-406. doi: 10.7498/aps.40.399
    [15] 周烽, 张国轩, 黄国松, 王之江. 圆筒激光器热应力分析. 物理学报, 1989, 38(2): 247-255. doi: 10.7498/aps.38.247
    [16] 涂相征. 热应力作用降低LPE层中的位错. 物理学报, 1983, 32(3): 315-324. doi: 10.7498/aps.32.315
    [17] 俞振中, 金刚, 陈新强, 马可军. 锑化铟单晶的小平面生长及孪晶. 物理学报, 1980, 29(1): 11-18. doi: 10.7498/aps.29.11
    [18] 陈继述. 红外薄膜热电探测器分析. 物理学报, 1974, 23(6): 51-58. doi: 10.7498/aps.23.51
    [19] 徐鸿达, 林兰英. 锑化铟的热处理. 物理学报, 1966, 22(6): 698-707. doi: 10.7498/aps.22.698
    [20] 林蘭英, 徐鸿达. 锑化铟的机械损伤. 物理学报, 1964, 20(12): 1268-1277. doi: 10.7498/aps.20.1268
计量
  • 文章访问数:  3681
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-20
  • 修回日期:  2021-09-24
  • 上网日期:  2022-01-13
  • 刊出日期:  2022-01-20

/

返回文章
返回