搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蜷曲空间结构的近零折射率声聚焦透镜

孙宏祥 方欣 葛勇 任旭东 袁寿其

引用本文:
Citation:

基于蜷曲空间结构的近零折射率声聚焦透镜

孙宏祥, 方欣, 葛勇, 任旭东, 袁寿其

Acoustic focusing lens with near-zero refractive index based on coiling-up space structure

Sun Hong-Xiang, Fang Xin, Ge Yong, Ren Xu-Dong, Yuan Shou-Qi
PDF
导出引用
  • 研究基于蜷曲空间结构的近零折射率声聚焦透镜.根据近零折射率材料的声波方向选择机理,采用蜷曲空间结构为基本单元进行排列,设计具有特定入射与出射界面的几何结构,对透射声波的出射方向进行调控,实现了平面声波与柱面声波的聚焦效应,并深入讨论了透镜内部刚性散射体对声聚焦性能的影响.在此基础上,改变近零折射率透镜的出射界面,可以精确调控声波阵面的形状与方向.该类型透镜具有单一的单元结构、高聚焦性能及高鲁棒性等优点.研究结果为设计新型近零折射率声聚焦透镜提供了理论指导与实验参考,同时也为研究声波阵面的调控提供了新思路.
    An acoustic focusing lens based on a coiling-up space structure with near-zero refractive index is studied. According to the direction selection mechanism for acoustic waves in a near-zero refractive index material, we adopt the coiling-up space structure as a basic unit for arrangement, and design a geometric structure with specific incident and outgoing interfaces which is used to manipulate the outgoing direction of transmitted wave. Thus, the focusing effects for plane acoustic wave and cylindrical acoustic wave are realized. Besides, the influences of rigid scatterers inside the lens on the focusing performance are also discussed in detail. Moreover, the shape and direction of the acoustic waveform can be manipulated accurately by changing the outgoing interface of the lens with the near-zero refractive index. The results show that the lens with a single and two circular surfaces could realize the focusing effects of the plane and cylindrical acoustic waves, respectively, and the rigid scatterers inside the lens have no effects on the focusing performance. In addition, the cylindrical acoustic wave could be transformed into the plane acoustic wave through the lens with the circular incident surface and the plane exit surface, and the inclined angle of the exit surface could be used to manipulate the propagation direction of the plane wave. The simulation results between the lenses composed of the coiling-up space structure and the effective medium are in good agreement with each other. This type of lens has the advantages of single cell structure, high focusing performance, and high robustness. This work provides theoretical guidance and experimental reference for designing a novel acoustic focusing lens with the near-zero refractive index, and offers a new idea for studying the manipulation of the acoustic waveforms.
      通信作者: 孙宏祥, jsdxshx@ujs.edu.cn;Shouqiy@ujs.edu.cn ; 袁寿其, jsdxshx@ujs.edu.cn;Shouqiy@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11774137,11404147)、国家自然科学基金重大项目(批准号:51239005)、江苏省自然科学基金(批准号:BK20140519)、江苏高校青蓝工程、江苏省六大人才高峰(批准号:GDZB-019)和江苏大学工业中心创新实践项目资助的课题.
      Corresponding author: Sun Hong-Xiang, jsdxshx@ujs.edu.cn;Shouqiy@ujs.edu.cn ; Yuan Shou-Qi, jsdxshx@ujs.edu.cn;Shouqiy@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774137, 11404147), the Major Program of the National Natural Science Foundation of China (Grant No. 51239005), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20140519), the Jiangsu Qing Lan Project, China, the Six Talent Peaks Project in Jiangsu Province, China (Grant No. GDZB-019), and the Practice Innovation Training Program for Industrial Center of Jiangsu University, China.
    [1]

    Zhao J J, Ye H P, Huang K, Chen Z N, Li B W, Qiu C W 2014 Sci. Rep. 4 6257

    [2]

    Gu Y, Cheng Y, Liu X J 2015 Appl. Phys. Lett. 107 133503

    [3]

    Zheng L, Guo J Z 2016 Acta Phys. Sin. 65 044305 (in Chinese) [郑莉, 郭建中 2016 物理学报 65 044305]

    [4]

    Tang K, Qiu C Y, Lu J Y, Ke M Z, Liu Z Y 2015 J. Appl. Phys. 117 024503

    [5]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Phys. D: Appl. Phys. 42 185505

    [6]

    Lin S C S, Huang T J, Sun J H, Wu T T 2009 Phys. Rev. B 79 094302

    [7]

    Torrent D, Sánchez-Dehesa J 2007 New J. Phys. 9 323

    [8]

    Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z, Liu Z Y 2010 Appl. Phys. Lett. 96 263502

    [9]

    Zhang S, Yin L L, Fang N 2009 Phys. Rev. Lett. 102 194301

    [10]

    Zigoneanu L, Popa B I, Cummer S A 2011 Phys. Rev. B 84 024305

    [11]

    Li Y, Liang B, Tao X, Zhu X F, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 233508

    [12]

    Wang W Q, Xie Y B, Konneker A, Popa B I, Cummer S A 2014 Appl. Phys. Lett. 105 101904

    [13]

    Dehesa J S, Angelov M I, Cervera F, Cai L W 2009 Appl. Phys. Lett. 95 204102

    [14]

    Qian F, Zhao P, Quan L Liu X Z, Gong X F 2014 Europhys. Lett. 107 34009

    [15]

    Ge Y, Sun H X, Liu C, Qian J, Yuan S Q, Xia J P, Guan Y J, Zhang S Y 2016 Appl. Phys. Express 9 066701

    [16]

    Liu C, Sun H X, Yuan S Q, Xia J P 2016 Acta Phys. Sin. 65 044303 (in Chinese) [刘宸, 孙宏祥, 袁寿其, 夏建平 2016 物理学报 65 044303]

    [17]

    Xia J P, Sun H X 2015 Appl. Phys. Lett. 106 063505

    [18]

    Xia J P, Sun H X, Cheng Q, Xu Z, Chen H, Yuan S Q, Zhang S Y, Ge Y, Guan Y J 2016 Appl. Phys. Express 9 057301

    [19]

    Guan Y J, Sun H X, Liu S S, Yuan S Q, Xia J P, Ge Y 2016 Chin. Phys. B 25 104302

    [20]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [21]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546

    [22]

    Mei J, Wu Y 2014 New J. Phys. 16 123007

    [23]

    Tang K, Qiu C Y, Ke M Z, Lu J Y, Ye Y T, Liu Z Y 2014 Sci. Rep. 4 6517

    [24]

    Xie Y, Wang W, Chen H, Konneker A, Popa B I, Cummer S A 2014 Nat. Commun. 5 5553

    [25]

    Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, Liang B, Cheng J C 2015 Sci. Rep. 5 10966

    [26]

    Yuan B G, Cheng Y, Liu X J 2015 Appl. Phys. Express 8 027301

    [27]

    Gao H, Gu Z M, Liang B, Zou X Y, Yang J, Yang J, Cheng J C 2016 Appl. Phys. Lett. 108 073501

    [28]

    Qian J, Liu B Y, Sun H X, Yuan S Q, Yu X Z 2017 Chin. Phys. B 26 114304

    [29]

    Liu C, Xia J P, Sun H X, Yuan S Q 2017 J. Phys. D: Appl. Phys. 50 505101

    [30]

    Tian Y, Wei Q, Cheng Y, Xu Z, Liu X J 2015 Appl. Phys. Lett. 107 221906

    [31]

    Fan X D, Zhu Y F, Liang B, Yang J, Cheng J C 2016 Appl. Phys. Lett. 109 243501

    [32]

    Liu C, Sun H X, Yuan S Q, Xia J P, Qian J 2017 Acta Phys. Sin. 66 154302 (in Chinese) [刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣 2017 物理学报 66 154302]

    [33]

    Jahdali R A, Wu Y 2016 Appl. Phys. Lett. 108 031902

    [34]

    Wang X P, Wan L L, Chen T N, Song A L, Wang F 2016 J. Appl. Phys. 120 014902

    [35]

    Xia J P, Sun H X, Yuan S Q 2017 Sci. Rep. 7 815

    [36]

    Liang Z X, Li J 2012 Phys. Rev. Lett. 108 114301

    [37]

    Xie Y B, Popa B I, Zigoneanu L, Cummer S A 2013 Phys. Rev. Lett. 110 175501

    [38]

    Li Y, Wu Y, Mei J 2014 Appl. Phys. Lett. 105 014107

    [39]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013

    [40]

    Lu G X, Ding E L, Wang Y Y, Ping X Y, Cui J, Liu X Z, Liu X J 2017 Appl. Phys. Lett. 110 123507

    [41]

    Wang Z Y, Wei W, Hu N, Min R, Pei L, Chen Y W, Liu F M, Liu Z Y 2014 J. Appl. Phys. 116 204501

    [42]

    Gu Y, Cheng Y, Wang J S, Liu X J 2015 J. Appl. Phys. 118 024505

    [43]

    Liu F M, Liu Z Y 2015 Phys. Rev. Lett. 115 175502

    [44]

    Wu S Q, Mei J 2016 AIP Adv. 6 015204

    [45]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 053505

    [46]

    Shen C, Xie Y B, Li J F, Cummer S A, Jing Y 2016 Appl. Phys. Lett. 108 223502

    [47]

    Zheng L Y, Wu Y, Ni X, Chen Z G, Lu M H, Chen Y F 2014 Appl. Phys. Lett. 104 161904

    [48]

    Xie Y B, Konneker A, Popa B I, Cummer S A 2013 Appl. Phys. Lett. 103 201906

    [49]

    Sun H X, Zhang S Y, Yuan S Q 2016 Chin. Phys. B 25 124313

    [50]

    Jia D, Sun H X, Yuan S Q, Ge Y 2017 Chin. Phys. B 26 024302

    [51]

    Sun X D, Chen L, Jiang H B, Yang Z B, Chen J C, Zhang W Y 2016 IEEE T. Ind. Electron. 63 3479

    [52]

    Fokin V, Ambati M, Sun C, Zhang X 2007 Phys. Rev. B 76 144302

  • [1]

    Zhao J J, Ye H P, Huang K, Chen Z N, Li B W, Qiu C W 2014 Sci. Rep. 4 6257

    [2]

    Gu Y, Cheng Y, Liu X J 2015 Appl. Phys. Lett. 107 133503

    [3]

    Zheng L, Guo J Z 2016 Acta Phys. Sin. 65 044305 (in Chinese) [郑莉, 郭建中 2016 物理学报 65 044305]

    [4]

    Tang K, Qiu C Y, Lu J Y, Ke M Z, Liu Z Y 2015 J. Appl. Phys. 117 024503

    [5]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Phys. D: Appl. Phys. 42 185505

    [6]

    Lin S C S, Huang T J, Sun J H, Wu T T 2009 Phys. Rev. B 79 094302

    [7]

    Torrent D, Sánchez-Dehesa J 2007 New J. Phys. 9 323

    [8]

    Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z, Liu Z Y 2010 Appl. Phys. Lett. 96 263502

    [9]

    Zhang S, Yin L L, Fang N 2009 Phys. Rev. Lett. 102 194301

    [10]

    Zigoneanu L, Popa B I, Cummer S A 2011 Phys. Rev. B 84 024305

    [11]

    Li Y, Liang B, Tao X, Zhu X F, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 233508

    [12]

    Wang W Q, Xie Y B, Konneker A, Popa B I, Cummer S A 2014 Appl. Phys. Lett. 105 101904

    [13]

    Dehesa J S, Angelov M I, Cervera F, Cai L W 2009 Appl. Phys. Lett. 95 204102

    [14]

    Qian F, Zhao P, Quan L Liu X Z, Gong X F 2014 Europhys. Lett. 107 34009

    [15]

    Ge Y, Sun H X, Liu C, Qian J, Yuan S Q, Xia J P, Guan Y J, Zhang S Y 2016 Appl. Phys. Express 9 066701

    [16]

    Liu C, Sun H X, Yuan S Q, Xia J P 2016 Acta Phys. Sin. 65 044303 (in Chinese) [刘宸, 孙宏祥, 袁寿其, 夏建平 2016 物理学报 65 044303]

    [17]

    Xia J P, Sun H X 2015 Appl. Phys. Lett. 106 063505

    [18]

    Xia J P, Sun H X, Cheng Q, Xu Z, Chen H, Yuan S Q, Zhang S Y, Ge Y, Guan Y J 2016 Appl. Phys. Express 9 057301

    [19]

    Guan Y J, Sun H X, Liu S S, Yuan S Q, Xia J P, Ge Y 2016 Chin. Phys. B 25 104302

    [20]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [21]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546

    [22]

    Mei J, Wu Y 2014 New J. Phys. 16 123007

    [23]

    Tang K, Qiu C Y, Ke M Z, Lu J Y, Ye Y T, Liu Z Y 2014 Sci. Rep. 4 6517

    [24]

    Xie Y, Wang W, Chen H, Konneker A, Popa B I, Cummer S A 2014 Nat. Commun. 5 5553

    [25]

    Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, Liang B, Cheng J C 2015 Sci. Rep. 5 10966

    [26]

    Yuan B G, Cheng Y, Liu X J 2015 Appl. Phys. Express 8 027301

    [27]

    Gao H, Gu Z M, Liang B, Zou X Y, Yang J, Yang J, Cheng J C 2016 Appl. Phys. Lett. 108 073501

    [28]

    Qian J, Liu B Y, Sun H X, Yuan S Q, Yu X Z 2017 Chin. Phys. B 26 114304

    [29]

    Liu C, Xia J P, Sun H X, Yuan S Q 2017 J. Phys. D: Appl. Phys. 50 505101

    [30]

    Tian Y, Wei Q, Cheng Y, Xu Z, Liu X J 2015 Appl. Phys. Lett. 107 221906

    [31]

    Fan X D, Zhu Y F, Liang B, Yang J, Cheng J C 2016 Appl. Phys. Lett. 109 243501

    [32]

    Liu C, Sun H X, Yuan S Q, Xia J P, Qian J 2017 Acta Phys. Sin. 66 154302 (in Chinese) [刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣 2017 物理学报 66 154302]

    [33]

    Jahdali R A, Wu Y 2016 Appl. Phys. Lett. 108 031902

    [34]

    Wang X P, Wan L L, Chen T N, Song A L, Wang F 2016 J. Appl. Phys. 120 014902

    [35]

    Xia J P, Sun H X, Yuan S Q 2017 Sci. Rep. 7 815

    [36]

    Liang Z X, Li J 2012 Phys. Rev. Lett. 108 114301

    [37]

    Xie Y B, Popa B I, Zigoneanu L, Cummer S A 2013 Phys. Rev. Lett. 110 175501

    [38]

    Li Y, Wu Y, Mei J 2014 Appl. Phys. Lett. 105 014107

    [39]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nat. Mater. 14 1013

    [40]

    Lu G X, Ding E L, Wang Y Y, Ping X Y, Cui J, Liu X Z, Liu X J 2017 Appl. Phys. Lett. 110 123507

    [41]

    Wang Z Y, Wei W, Hu N, Min R, Pei L, Chen Y W, Liu F M, Liu Z Y 2014 J. Appl. Phys. 116 204501

    [42]

    Gu Y, Cheng Y, Wang J S, Liu X J 2015 J. Appl. Phys. 118 024505

    [43]

    Liu F M, Liu Z Y 2015 Phys. Rev. Lett. 115 175502

    [44]

    Wu S Q, Mei J 2016 AIP Adv. 6 015204

    [45]

    Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Appl. Phys. Lett. 103 053505

    [46]

    Shen C, Xie Y B, Li J F, Cummer S A, Jing Y 2016 Appl. Phys. Lett. 108 223502

    [47]

    Zheng L Y, Wu Y, Ni X, Chen Z G, Lu M H, Chen Y F 2014 Appl. Phys. Lett. 104 161904

    [48]

    Xie Y B, Konneker A, Popa B I, Cummer S A 2013 Appl. Phys. Lett. 103 201906

    [49]

    Sun H X, Zhang S Y, Yuan S Q 2016 Chin. Phys. B 25 124313

    [50]

    Jia D, Sun H X, Yuan S Q, Ge Y 2017 Chin. Phys. B 26 024302

    [51]

    Sun X D, Chen L, Jiang H B, Yang Z B, Chen J C, Zhang W Y 2016 IEEE T. Ind. Electron. 63 3479

    [52]

    Fokin V, Ambati M, Sun C, Zhang X 2007 Phys. Rev. B 76 144302

  • [1] 段韵达, 胡恒山. 轴对称指向性球面波的界面反射波. 物理学报, 2022, 71(7): 074301. doi: 10.7498/aps.71.20211718
    [2] 王明军, 王婉柔, 李勇俊. 利用平面声场对非均匀大气介质光波传输相位的调控. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220484
    [3] 刘向东, 吴福根, 姚源卫, 张欣. 二维近零折射率声学材料的负向Schoch位移. 物理学报, 2021, 70(12): 124601. doi: 10.7498/aps.70.20202108
    [4] 郭威, 杨德森. 非均匀波导中的声聚焦. 物理学报, 2020, 69(7): 074301. doi: 10.7498/aps.69.20191854
    [5] 王一鹤, 张志旺, 程营, 刘晓峻. 声子晶体中的表面声波赝自旋模式和拓扑保护声传输. 物理学报, 2019, 68(22): 227805. doi: 10.7498/aps.68.20191363
    [6] 徐小虎, 陈永强, 郭志伟, 孙勇, 苗向阳. 等效零折射率材料微腔中均匀化腔场作用下的简正模劈裂现象. 物理学报, 2018, 67(2): 024210. doi: 10.7498/aps.67.20171880
    [7] 周志刚, 宗谨, 王文广, 厚美瑛. 颗粒样品形变对声波传播影响的实验探究. 物理学报, 2017, 66(15): 154502. doi: 10.7498/aps.66.154502
    [8] 刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣. 基于热声相控阵列的声聚焦效应. 物理学报, 2017, 66(15): 154302. doi: 10.7498/aps.66.154302
    [9] 耿滔, 吴娜, 董祥美, 高秀敏. 基于磁流体光子晶体的可调谐近似零折射率研究. 物理学报, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [10] 陆志仁, 梁斌明, 丁俊伟, 陈家璧, 庄松林. 近零折射率材料的古斯汉欣位移的特性研究. 物理学报, 2016, 65(15): 154208. doi: 10.7498/aps.65.154208
    [11] 刘宸, 孙宏祥, 袁寿其, 夏建平. 基于温度梯度分布的宽频带声聚焦效应. 物理学报, 2016, 65(4): 044303. doi: 10.7498/aps.65.044303
    [12] 宋玉来, 卢奂采, 金江明. 单层传声器阵列信号空间重采样的声波分离方法. 物理学报, 2014, 63(19): 194305. doi: 10.7498/aps.63.194305
    [13] 苏妍妍, 龚伯仪, 赵晓鹏. 基于双负介质结构单元的零折射率超材料. 物理学报, 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [14] 刘启能. 研究一维掺杂声子晶体缺陷模的解析方法. 物理学报, 2011, 60(4): 044302. doi: 10.7498/aps.60.044302
    [15] 高国钦, 马守林, 金峰, 金东范, 卢天健. 声波在二维固/流声子晶体中的禁带特性研究. 物理学报, 2010, 59(1): 393-400. doi: 10.7498/aps.59.393
    [16] 陈 谦, 邹欣晔, 程建春. 超声波声孔效应中气泡动力学的研究. 物理学报, 2006, 55(12): 6476-6481. doi: 10.7498/aps.55.6476
    [17] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究. 物理学报, 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [18] 韩汝取, 史庆藩, 孙 刚. 声波在一维易膨胀介质中传播的计算机模拟. 物理学报, 2005, 54(5): 2188-2193. doi: 10.7498/aps.54.2188
    [19] 段文山, 洪学仁. 弱相对论等离子体横向扰动下的离子声孤波. 物理学报, 2003, 52(6): 1337-1339. doi: 10.7498/aps.52.1337
    [20] 吴福根, 刘有延. 二维周期性复合介质中声波带隙结构及其缺陷态. 物理学报, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
计量
  • 文章访问数:  3338
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-13
  • 修回日期:  2017-09-14
  • 刊出日期:  2017-12-05

基于蜷曲空间结构的近零折射率声聚焦透镜

    基金项目: 国家自然科学基金(批准号:11774137,11404147)、国家自然科学基金重大项目(批准号:51239005)、江苏省自然科学基金(批准号:BK20140519)、江苏高校青蓝工程、江苏省六大人才高峰(批准号:GDZB-019)和江苏大学工业中心创新实践项目资助的课题.

摘要: 研究基于蜷曲空间结构的近零折射率声聚焦透镜.根据近零折射率材料的声波方向选择机理,采用蜷曲空间结构为基本单元进行排列,设计具有特定入射与出射界面的几何结构,对透射声波的出射方向进行调控,实现了平面声波与柱面声波的聚焦效应,并深入讨论了透镜内部刚性散射体对声聚焦性能的影响.在此基础上,改变近零折射率透镜的出射界面,可以精确调控声波阵面的形状与方向.该类型透镜具有单一的单元结构、高聚焦性能及高鲁棒性等优点.研究结果为设计新型近零折射率声聚焦透镜提供了理论指导与实验参考,同时也为研究声波阵面的调控提供了新思路.

English Abstract

参考文献 (52)

目录

    /

    返回文章
    返回