搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀波导中的声聚焦

郭威 杨德森

引用本文:
Citation:

非均匀波导中的声聚焦

郭威, 杨德森

Sound focusing in inhomogeneous waveguides

Guo Wei, Yang De-Sen
PDF
HTML
导出引用
  • 理论研究了声波在非均匀波导中的空间聚焦问题, 利用多模态导纳法构建波导内任意位置处声压与入射声压在模态域的映射关系, 计算使声波聚焦于空间某位置时的最佳入射波, 并画出了相应的聚焦声场. 研究了三种非均匀情况: 水平变截面波导、含散射体波导以及声速垂直变化波导. 结果表明, 当输入最佳入射波时, 在非均匀波导中可以产生良好的单点或多点声聚焦效果, 声波的聚焦过程充分地利用了波导结构及介质非均匀性对声波的散射作用.
    A method for analytically studying sound focusing in inhomogeneous waveguides is presented. From the viewpoint of acquiring the maximum acoustic pressure at an arbitrary position with normalized energy flux injection, optimal incident waves can be derived based on the multimodal admittance method. The method involves two steps. The first step is to expand the wave solution onto a complete orthogonal basis set so that the Helmholtz equation can be transformed into two sets of first-order coupled differential equations in the modal domain. The second step is to solve the coupled equations numerically by introducing admittance matrices and propagators, which can be used to derive reflection matrices and transmission matrices. Using the multimodal admittance method, one can circumvent the contamination caused by exponentially diverging evanescent modes and acquire stable wave solutions. Then the mapping between the acoustic pressure at an arbitrary position and that of the incident wave can be constructed, and this mapping changes the problem of wave focusing into solving the extrema of inner products in Hilbert space. The optimal incident waves that generate wave focusing at an arbitrary position can be readily computed together with the corresponding wave solutions. In this paper, we study the sound focusing in waveguides with varying cross-sections, scatterers and sound-speed profiles. The results show that the optimal incident waves will take full advantage of wave scattering caused by the boundaries and inhomogeneities during propagation to achieve the maximum pressure at foci, leading to good single-point and multi-point sound focusing performance. In addition, we find when injecting the spatially sampled optimal incident waves or the optimal incident waves with random perturbations, the resultant wave focusing phenomena will be still apparent. The focusing behaviors are highly robust to the perturbations of the moduli of the incident waves and slightly less robust to that of the arguments of the incident waves. Our method is also available for analyzing wave focusing in other kinds of inhomogeneous waveguides. We believe that our research can provide guidance on designing acoustic lenses or metamaterials to focus sound waves in complex media, and can offer inspiration in wave communications, imagings and non-destructive testing.
      通信作者: 杨德森, dshyang@hrbeu.edu.cn
      Corresponding author: Yang De-Sen, dshyang@hrbeu.edu.cn
    [1]

    Gupta B C, Ye Z 2003 Phys. Rev. E 67 036603Google Scholar

    [2]

    Håkansson A, Cervera F, Sánchez-Dehesa J 2005 Appl. Phys. Lett. 86 054102Google Scholar

    [3]

    Climente A, Torrent D, Sánchez-Dehesa J 2010 Appl. Phys. Lett. 97 104103Google Scholar

    [4]

    Guenneau S, Movchan A, Pétursson G, Ramakrishna S A 2007 New J. Phys. 9 399Google Scholar

    [5]

    刘宸, 孙宏祥, 袁寿其, 夏建平 2016 物理学报 65 174

    Liu C, Sun H X, Yuan S Q, Xia J P 2016 Acta Phys. Sin. 65 174

    [6]

    刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣 2017 物理学报 66 167

    Liu C, Sun H X, Yuan S Q, Xia J P, Qian J 2017 Acta Phys. Sin. 66 167

    [7]

    Zel'dovich B Y, Popovichev V I, Ragul'skii V V, Faizullov F S 1972 JETP Lett. 15 109

    [8]

    Papadopoulos I N, Farahi S, Moser C, Psaltis D 2012 Opt. Express 20 10583Google Scholar

    [9]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601Google Scholar

    [10]

    Rotter S, Gigan S 2017 Rev. Mod. Phys. 89 015005Google Scholar

    [11]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [12]

    van Putten E G, Akbulut D, Bertolotti J, Vos W L, Lagendijk A, Mosk A P 2011 Phys. Rev. Lett. 106 193905Google Scholar

    [13]

    Aulbach J, Gjonaj B, Johnson P M, Mosk A P, Lagendijk Ad 2011 Phys. Rev. Lett. 106 103901Google Scholar

    [14]

    Katz O, Small E, Bromberg Y, Silberberg Y 2011 Nat. Photonics 5 372Google Scholar

    [15]

    McCabe D J, Tajalli A, Austin D R, Bondareff P, Walmsley I A, Gigan S, Chatel B 2011 Nat. Commun. 2 447Google Scholar

    [16]

    Mounaix M, Andreoli D, Defienne H, Volpe G, Katz O, Grésillon S, Gigan S 2016 Phys. Rev. Lett. 116 253901Google Scholar

    [17]

    Fink M, Cassereau D, Derode A, Prada C, Roux P, Tanter M, Thomas J L, Wu F 2000 Rep. Prog. Phys. 63 1933Google Scholar

    [18]

    Derode A, Roux P, Fink M 1995 Phys. Rev. Lett. 75 4206Google Scholar

    [19]

    殷敬伟, 惠娟, 惠俊英, 生雪莉, 姚直象 2007 声学学报 32 362Google Scholar

    Yin J W, Hui J, Hui J Y, Sheng X L, Yao Z X 2007 Acta Acust. 32 362Google Scholar

    [20]

    Maurel A, Mercier J F, Félix S 2014 J. Acoust. Soc. Am. 135 165Google Scholar

    [21]

    Bandres M A, Gutiérrez-Vega J C, Chávez-Cerda S 2004 Opt. Lett. 29 44Google Scholar

    [22]

    Pagneux V, Amir N, Kergomard J 1996 J. Acoust. Soc. Am. 100 2034Google Scholar

    [23]

    Lu Y Y, McLaughlin J R 1996 J. Acoust. Soc. Am. 100 1432Google Scholar

    [24]

    Pagneux V 2010 J. Comput. Appl. Math. 234 1834Google Scholar

    [25]

    Lu Y Y 2005 J. Comput. Appl. Math. 173 247Google Scholar

    [26]

    Maurel A, Mercier J F, Pagneux V 2014 Proc. R. Soc. A 470 20130448Google Scholar

    [27]

    Li Q, Liu J, Guo W 2020 Chin. Phys. B 29 014303Google Scholar

    [28]

    黄益旺 2005 博士学位论文(哈尔滨: 哈尔滨工程大学)

    Huang Y W 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [29]

    Popoff S M, Lerosey G, Fink M, Boccara A C, Gigan S 2011 New J. Phys. 13 123021Google Scholar

    [30]

    Kim M, Choi W, Choi Y, Yoon C, Choi W 2015 Opt. Express 23 12648Google Scholar

  • 图 1  均匀波导中的声聚焦

    Fig. 1.  Sound focusing in homogeneous waveguides.

    图 2  水平变截面刚硬波导示意图

    Fig. 2.  Configuration of rigid waveguides with varying cross-sections.

    图 3  (a)和(b)为变截面波导分别在$\left( {{x_0}, {y_0}} \right) = (3.2, 0.9)$(透射区域)及$(1.6, 0.2)$(散射区域)处产生聚焦的声场; (c)和(d)主图中的蓝色实线分别为(a)和(b)中${x_0}$处的声压幅值随高度方向的分布, 黑色点线为${p_i} = \varLambda {\psi _0}\left( y \right)$(平面波)时${x_0}$处的声压幅值分布; 插图中的蓝色曲线和黑色点线分别为最佳入射波及平面波的幅值曲线

    Fig. 3.  Acoustic focusing field in the waveguide as calculated by the present method. The foci are located at (a) $\left( {{x_0}, {y_0}} \right) = $ (3.2, 0.9) in transmission region and (b) $(1.6, 0.2)$ in scattering region, respectively. The blue solid lines in (c) and (d) are $\left| {p({x_0}, y)} \right|$ corresponding to (a) and (b), respectively, and the black dotted lines are $\left| {p({x_0}, y)} \right|$ generated by ${p_i} = \varLambda {\psi _0}\left( y \right)$(plane wave). The insets plot the modulus of the corresponding incident waves.

    图 4  (a) 变截面波导中的双点聚焦声场, 聚焦点为$(3.2, 0.9)$$(3.2, 0.1)$; (b) 最佳入射声压幅值分布; (c) 蓝色实线为(a)中声场在$x = 3.2$处的声压幅值分布; 红色点划线表示声波在$(3.2, 0.9)$处单点聚焦时的声压幅值分布, 与图3(c)中蓝色曲线一致; 黑色虚线为声波在$(3.2, 0.1)$处单点聚焦时的声压幅值分布. 频率和波导几何参数与图3一致

    Fig. 4.  (a) Sound two-point focusing field in the waveguide with varying cross-section, the foci are located at $(3.2, 0.9)$ and $(3.2, 0.1)$; (b) modulus of the optimal incident pressure; (c) the blue solid line represents $\left| {p(3.2, y)} \right|$ in (a); the red dot-dashed line shows $\left| {p(3.2, y)} \right|$ when the wave focus only at $(3.2, 0.9)$, which is same as the blue solid line in Fig. 3(c); and the black dashed line shows $\left| {p(3.2, y)} \right|$ when the wave focus only at $(3.2, 0.1)$. The frequency and geometries of the waveguide are same as Fig. 3.

    图 5  含散射体刚硬波导示意图

    Fig. 5.  Configuration of rigid waveguides involving a scatterer.

    图 6  (a) 含散射体波导中的聚焦声场, 聚焦点位于$(3, 0.35)$; (b) ${p_i} = \varLambda {\psi _0}\left( y \right)$(平面波)入射时的声场; (c) 产生(a)中声聚焦的最佳入射波(蓝色实线)与入射平面波(黑色点线)的幅值分布; (d) 蓝色实线与黑色点线分别为(a)与(b)中$x = 3$处的声压幅值分布

    Fig. 6.  (a) Sound focusing field in the waveguide with a scatterer. The focus is located at $(3, 0.35)$; (b) sound field generated by a plane wave ${p_i} = \varLambda {\psi _0}\left( y \right)$; (c) modulus of the pressure of optimal incident wave in (a) and that of the plane incident wave in (b); (d) $\left| {p(3, y)} \right|$ in (a) (blue solid line) and (b) (black dotted line).

    图 7  (a) 负声速梯度含散射体浅海波导中的声聚焦, 波导深度$h = 100\;{\rm{ m}}$, 聚焦点$(35 h, 0.1 h)$位于透射区域; (b)声速垂直变化情况; (c)$x = 35 h$处声压幅值随深度的变化曲线(蓝色实线)以及${p_i} = \varLambda {\psi _0}\left( y \right)$(非平面波)入射时产生的声压(黑色虚线)对比, 插图中为最佳入射波及${p_i} = \varLambda {\psi _0}\left( y \right)$的幅值分布

    Fig. 7.  (a) Sound focusing field in the waveguide with negative sound-speed gradient and a scatterer. The focus is located at $(35 h, 0.1 h)$, where $h = 100\;{\rm{ m}}$ is the depth; (b)the sound speed profile; (c)$\left| {p(35 h, y)} \right|$ (blue solid line) compared with that generated by ${p_i} = \varLambda {\psi _0}\left( y \right)$. The insetplotsthe modulus of the optimal incident pressure (blue solid line) and $\varLambda {\psi _0}\left( y \right)$(black dashed line).

    图 8  y方向稀疏输入对聚焦结果的影响 (a) 对最佳入射波进行半波长采样后的聚焦声场;(b) 对最佳入射波进行单倍波长采样后的聚焦声场;(c)采样后的入射波幅值分布; (d) 聚焦点${x_0}$处的声压幅值分布. 蓝色实线为理论值, 与图3(c)中的蓝色曲线一致

    Fig. 8.  Sound focusing fields when the optimal incident wave is discretized: (a) Half-wavelength spacing; (b) single-wavelength spacing; (c) the moduli of the two spaced incident waves; (d) the red dashed line and the black dot-dashed line are the corresponding $\left| {p(3.2, y)} \right|$ generated by the incident waves in (c). The blue solid line is the theoretical result which is same as that in Fig. 3(c).

    图 9  (a) 最佳入射波的幅值存在随机扰动时的聚焦声场; (b) 最佳入射波的相位存在随机扰动时的聚焦声场; (c) 红色虚线与黑色点划线分别为幅值扰动与相位扰动后的入射波幅值分布; (d) 红色虚线与黑色点划线分别为(c)中的入射波在聚焦点${x_0}$处产生的声压幅值分布, 蓝色实线为理论值, 与图3(c)中的蓝色曲线一致

    Fig. 9.  Sound focusing fields when (a) the moduli and (b) the arguments of the optimal incident wave are perturbed; (c) the red dashed line is the incident wave with perturbed moduli, and the black dot-dashed line is that with perturbed arguments; (d) the red dashed line and the black dot-dashed line are the corresponding $\left| {p(3.2, y)} \right|$ generated by the incident waves in (c). The blue solid line is the result without perturbation which is same as that in Fig. 3(c).

  • [1]

    Gupta B C, Ye Z 2003 Phys. Rev. E 67 036603Google Scholar

    [2]

    Håkansson A, Cervera F, Sánchez-Dehesa J 2005 Appl. Phys. Lett. 86 054102Google Scholar

    [3]

    Climente A, Torrent D, Sánchez-Dehesa J 2010 Appl. Phys. Lett. 97 104103Google Scholar

    [4]

    Guenneau S, Movchan A, Pétursson G, Ramakrishna S A 2007 New J. Phys. 9 399Google Scholar

    [5]

    刘宸, 孙宏祥, 袁寿其, 夏建平 2016 物理学报 65 174

    Liu C, Sun H X, Yuan S Q, Xia J P 2016 Acta Phys. Sin. 65 174

    [6]

    刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣 2017 物理学报 66 167

    Liu C, Sun H X, Yuan S Q, Xia J P, Qian J 2017 Acta Phys. Sin. 66 167

    [7]

    Zel'dovich B Y, Popovichev V I, Ragul'skii V V, Faizullov F S 1972 JETP Lett. 15 109

    [8]

    Papadopoulos I N, Farahi S, Moser C, Psaltis D 2012 Opt. Express 20 10583Google Scholar

    [9]

    Popoff S M, Lerosey G, Carminati R, Fink M, Boccara A C, Gigan S 2010 Phys. Rev. Lett. 104 100601Google Scholar

    [10]

    Rotter S, Gigan S 2017 Rev. Mod. Phys. 89 015005Google Scholar

    [11]

    Vellekoop I M, Mosk A P 2007 Opt. Lett. 32 2309Google Scholar

    [12]

    van Putten E G, Akbulut D, Bertolotti J, Vos W L, Lagendijk A, Mosk A P 2011 Phys. Rev. Lett. 106 193905Google Scholar

    [13]

    Aulbach J, Gjonaj B, Johnson P M, Mosk A P, Lagendijk Ad 2011 Phys. Rev. Lett. 106 103901Google Scholar

    [14]

    Katz O, Small E, Bromberg Y, Silberberg Y 2011 Nat. Photonics 5 372Google Scholar

    [15]

    McCabe D J, Tajalli A, Austin D R, Bondareff P, Walmsley I A, Gigan S, Chatel B 2011 Nat. Commun. 2 447Google Scholar

    [16]

    Mounaix M, Andreoli D, Defienne H, Volpe G, Katz O, Grésillon S, Gigan S 2016 Phys. Rev. Lett. 116 253901Google Scholar

    [17]

    Fink M, Cassereau D, Derode A, Prada C, Roux P, Tanter M, Thomas J L, Wu F 2000 Rep. Prog. Phys. 63 1933Google Scholar

    [18]

    Derode A, Roux P, Fink M 1995 Phys. Rev. Lett. 75 4206Google Scholar

    [19]

    殷敬伟, 惠娟, 惠俊英, 生雪莉, 姚直象 2007 声学学报 32 362Google Scholar

    Yin J W, Hui J, Hui J Y, Sheng X L, Yao Z X 2007 Acta Acust. 32 362Google Scholar

    [20]

    Maurel A, Mercier J F, Félix S 2014 J. Acoust. Soc. Am. 135 165Google Scholar

    [21]

    Bandres M A, Gutiérrez-Vega J C, Chávez-Cerda S 2004 Opt. Lett. 29 44Google Scholar

    [22]

    Pagneux V, Amir N, Kergomard J 1996 J. Acoust. Soc. Am. 100 2034Google Scholar

    [23]

    Lu Y Y, McLaughlin J R 1996 J. Acoust. Soc. Am. 100 1432Google Scholar

    [24]

    Pagneux V 2010 J. Comput. Appl. Math. 234 1834Google Scholar

    [25]

    Lu Y Y 2005 J. Comput. Appl. Math. 173 247Google Scholar

    [26]

    Maurel A, Mercier J F, Pagneux V 2014 Proc. R. Soc. A 470 20130448Google Scholar

    [27]

    Li Q, Liu J, Guo W 2020 Chin. Phys. B 29 014303Google Scholar

    [28]

    黄益旺 2005 博士学位论文(哈尔滨: 哈尔滨工程大学)

    Huang Y W 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese)

    [29]

    Popoff S M, Lerosey G, Fink M, Boccara A C, Gigan S 2011 New J. Phys. 13 123021Google Scholar

    [30]

    Kim M, Choi W, Choi Y, Yoon C, Choi W 2015 Opt. Express 23 12648Google Scholar

  • [1] 卜梦旭, 顾文庭, 李博艺, 朱秋晨, 江雪, 他得安, 刘欣. 基于声透镜的多频经颅聚焦. 物理学报, 2024, 73(23): 234301. doi: 10.7498/aps.73.20241123
    [2] 刘昀鹏, 李义丰, 蓝君. 基于圆柱形非均匀迷宫结构的动态可调定向声辐射. 物理学报, 2023, 72(6): 064301. doi: 10.7498/aps.72.20222186
    [3] 谢实梦, 黄林, 王雪, 迟子惠, 汤永辉, 郑铸, 蒋华北. 基于镂空阵列探头的反射式光声/热声双模态组织成像. 物理学报, 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012
    [4] 郭威, 杨德森. 非均匀波导中的最大声能流透射及鲁棒性分析. 物理学报, 2021, 70(17): 174302. doi: 10.7498/aps.70.20210495
    [5] 刘娟, 李琪. 一种水平变化波导中声传播问题的耦合模态法. 物理学报, 2021, 70(6): 064301. doi: 10.7498/aps.70.20201726
    [6] 孙宏祥, 方欣, 葛勇, 任旭东, 袁寿其. 基于蜷曲空间结构的近零折射率声聚焦透镜. 物理学报, 2017, 66(24): 244301. doi: 10.7498/aps.66.244301
    [7] 刘宸, 孙宏祥, 袁寿其, 夏建平, 钱姣. 基于热声相控阵列的声聚焦效应. 物理学报, 2017, 66(15): 154302. doi: 10.7498/aps.66.154302
    [8] 刘宸, 孙宏祥, 袁寿其, 夏建平. 基于温度梯度分布的宽频带声聚焦效应. 物理学报, 2016, 65(4): 044303. doi: 10.7498/aps.65.044303
    [9] 张金鹏, 张玉石, 吴振森, 张玉生, 胡荣旭. 基于雷达海杂波的区域性非均匀蒸发波导反演方法. 物理学报, 2015, 64(12): 124101. doi: 10.7498/aps.64.124101
    [10] 聂永发, 朱海潮. 利用源强密度声辐射模态重建声场. 物理学报, 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [11] 王小飞, 曲建岭, 高峰, 周玉平, 张翔宇. 基于噪声辅助非均匀采样复数据经验模态分解的混沌信号降噪. 物理学报, 2014, 63(17): 170203. doi: 10.7498/aps.63.170203
    [12] 曾夏辉, 范滇元. 锥形空心银波导的聚焦特性. 物理学报, 2010, 59(9): 6312-6318. doi: 10.7498/aps.59.6312
    [13] 宋 琦, 宋昌烈, 李成仁, 李淑凤, 李建勇. 纵向非均匀掺铒的光波导放大器特性数值模拟研究. 物理学报, 2005, 54(4): 1624-1629. doi: 10.7498/aps.54.1624
    [14] 梁子长, 金亚秋. 非均匀散射层矢量辐射传输(VRT)方程高阶散射解的迭代法. 物理学报, 2003, 52(2): 247-255. doi: 10.7498/aps.52.247
    [15] 李芳昱, 罗俊, 唐孟希. 轴对称非均匀弹性介质中引力波对声子的作用效应. 物理学报, 1994, 43(8): 1217-1225. doi: 10.7498/aps.43.1217
    [16] 王佐卿. 声表面波在线性调频声栅上作Bragg衍射后的聚焦声场. 物理学报, 1988, 37(3): 388-395. doi: 10.7498/aps.37.388
    [17] 庞根弟, 蔡建华. 非均匀无序系统的声子局域化. 物理学报, 1988, 37(4): 688-690. doi: 10.7498/aps.37.688
    [18] 卫崇德, 赵士平, 薛立新. 声子注入下超导锡膜的非均匀态. 物理学报, 1985, 34(10): 1368-1372. doi: 10.7498/aps.34.1368
    [19] 沈牮亚. 管子探伤中聚焦声束在管外壁覆盖区上入射角的讨论. 物理学报, 1978, 27(3): 356-360. doi: 10.7498/aps.27.356
    [20] 尚尔昌. 非均匀层中的反波导传播. 物理学报, 1961, 17(4): 180-190. doi: 10.7498/aps.17.180
计量
  • 文章访问数:  8202
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-09
  • 修回日期:  2020-02-03
  • 刊出日期:  2020-04-05

/

返回文章
返回