搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Adam算法的光学相控阵输出光束校准方法

王子豪 龙烨 仇轲 徐佳木 孙艳玲 范修宏 马琳 廖家莉 康永强

引用本文:
Citation:

基于Adam算法的光学相控阵输出光束校准方法

王子豪, 龙烨, 仇轲, 徐佳木, 孙艳玲, 范修宏, 马琳, 廖家莉, 康永强

Optical phased array output beam calibration method based on Adam algorithm

Wang Zi-Hao, Long Ye, Qiu Ke, Xu Jia-Mu, Sun Yan-Ling, Fan Xiu-Hong, Ma Lin, Liao Jia-Li, Kang Yong-Qiang
PDF
HTML
导出引用
  • 基于微纳集成的光波导相控阵芯片是近年来激光雷达技术领域的研究热点. 随着激光雷达系统空间分辨这一实际应用需求的不断提高, 作为激光雷达系统中的光束控制器件, 光波导相控阵需要扩大阵列规模以提升输出光束的空间分辨率. 同时也为光波导相控阵输出光束的优化校准带来了困难, 现有算法不仅光束校准质量不高, 且校准效率较低. 为此, 本文将Adam算法应用于光波导相控阵输出光束校准系统中, 通过建模仿真比较了Adam算法与现有SPGD算法和GS算法在光束校准层面上的优劣. 同时, 搭建实验系统实现了高质量的光束校准, 根据校准结果, 在Adam算法校准下光波导相控阵输出光束的主旁瓣比优于15.98 dB, 对16×16光波导相控阵输出光束校准达到收敛所需的迭代次数低于600次. 这一算法在光波导相控阵输出光束校准方面的应用, 能够提高光波导相控阵的控制精度和效率, 拓展光波导相控阵在激光雷达技术、数字全息技术和生物成像技术等方面的应用.
    Optical phased array (OPA) technology, as a pivotal component of laser detection and ranging (LiDAR) systems, plays a crucial role in augmenting the application efficiency in fields such as autonomous driving, precision measurement, and remote sensing detection. With the escalating demands for high-resolution imaging, the array size of OPAs is continuously expanding, imposing higher requirements on the calibration precision and efficiency of the output beam. Existing calibration algorithms, such as the simultaneous perturbation stochastic gradient descent (SPGD) and the Gerchberg-Saxton (GS) algorithm, often face challenges of prolonging calibration times and insufficient precision when dealing with large-scale OPA systems.In order to address this problem, our study introduces the Adam optimization algorithm, renowned for its adaptive learning rate feature, into the calibration process of OPA output beams. Through simulation modeling and experimental validation, this work comprehensively examines the differences in performance between the Adam algorithm and conventional SPGD and GS algorithms in beam calibration, especially under various OPA array configurations. For a 16×16 OPA array, the application of the Adam algorithm significantly enhances the peak side lobe ratio (PSLR) to over 15.98 dB, while notably reducing the number of iterations to less than 600, thereby shortening the calibration cycle and improving calibration precision effectively.Furthermore, this work provides an in-depth analysis of parameter selection, convergence speed, and stability of the Adam algorithm in OPA calibration, offering detailed guidance for achieving more efficient and high-quality beam calibration. Through comparative analysis, this work not only demonstrates the substantial advantages of the Adam algorithm in enhancing OPA calibration efficiency, reducing calibration duration, and optimizing output beam quality but also emphasizes its critical role in advancing OPA technology.The main contribution of this work lies in providing an innovative algorithmic approach for achieving efficient calibration of OPA output beams, which has important theoretical and practical significance for advancing the LiDAR technology, particularly in the field of high-precision beam control. Moreover, by applying optimized algorithms, this study not only improves the performance of OPA technology within existing domains but also paves new ways for its application in emerging fields such as optical communication, optical networking, and high-resolution imaging.
      通信作者: 马琳, lma@mail.xidian.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 62005207)和陕西省国家自然科学基金(批准号: 2019JQ-648)资助的课题.
      Corresponding author: Ma Lin, lma@mail.xidian.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62005207) and the National Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JQ-648).
    [1]

    Barker S, Rebeiz G M 1998 IEEE T. Microw. Theory 46 1881Google Scholar

    [2]

    Duewer B E, Wilson J M, Winick D A, Franzon P D 1999 Proceedings of SPIE-The International Society for Optical Engineering Gold Coast, Australia, October 8, 1999 p262

    [3]

    Hobbs R H, Cantor A J, Grantham D H, Shuskus A J, Berak J M, Cowher M E, Farina J D, Hoffman N N, Black J F, Drake G W, Brown R T, Holton C E, Silverman B B, Leonberger F J, Demaria A J 2002 Conference Proceedings LEOS Lasers and Electro-Optics Society Santa Clara, CA, USA, February 4, 1988 p94

    [4]

    Konforti N, Marom E, Wu S T 1988 Opt. Lett. 13 251Google Scholar

    [5]

    Malczewski A, Eshelman S, Pillans B, Ehmke J, Goldsmith C 1999 IEEE Microw. Guided W. 9 517Google Scholar

    [6]

    Pillans B, Eshelman S, Malczewski A, Ehmke J, Goldsmith C 2002 Radio Frequency Integrated Circuits (RFIC) Symposium: Digest of Papers Boston, MA, USA, June 11–13, 2000 p195

    [7]

    Meyer R A 1972 Appl. Opt. 11 613Google Scholar

    [8]

    Sun J, Hosseini E S, Yaacobi A, Cole D B, Leake G, Coolbaugh D, Watts M R 2014 Opt. Lett. 39 367Google Scholar

    [9]

    Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R 2013 Nature 493 195Google Scholar

    [10]

    Sun J, Timurdogan E, Yaacobi A, Su Z, Hosseini E S, Cole D B, Watts M R 2013 IEEE J. Sel. Top. Quant. 20 264Google Scholar

    [11]

    Yaacobi A, Sun J, Moresco M, Leake G, Coolbaugh D, Watts M R 2014 Opt. Lett. 39 4575Google Scholar

    [12]

    Mahon R, Preussner M W, Rabinovich W S, Goetz P G, Kozak D A, Ferraro M S, Murphy J L 2016 Free-Space Laser Communication and Atmospheric Propagation XXVIII San Francisco, California, USA, March 15, 2016 p224

    [13]

    Kim S H, You J B, Ha Y G, Kang G, Lee D S, Yoon H, Yoo D E, Lee D W, Yu K, Youn C H, Park H H 2019 Opt. Lett. 44 411Google Scholar

    [14]

    丁亚军, 钱盛友, 胡继文, 邹孝 2012 物理学报 61 144301Google Scholar

    Ding Y J, Qian Y S, Hu J W, Zou X 2012 Acta Phys. Sin. 61 144301Google Scholar

    [15]

    李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋 2021 物理学报 70 084205Google Scholar

    Li M F, Yuan Z H, Liu Y X, Deng Y C, Wang X F 2021 Acta Phys. Sin. 70 084205Google Scholar

    [16]

    Zhang H Y, Zhang Z X, Peng C, Hu W W 2020 IEEE Photonics J. 12 6600210Google Scholar

    [17]

    Leng L M, Zeng Z B, Wu G H, Lin Z Z, Ji X, Shi Z Y, Jiang W 2022 Photonics Res. 10 347Google Scholar

    [18]

    Notaros J, Poulton C V, Raval M, Watts M R 2018 J. Lightwave Technol. 36 5912Google Scholar

    [19]

    Raptakis A, Gounaridis L, Weigel M, Kleinert M, Georgiopoulos M, Mylonas E, Groumas P, Tsokos C, Keil N, Avramopoulos H 2021 J. Lightwave Technol. 39 6509Google Scholar

    [20]

    Tyler N A, Fowler D, Malhouitre S, Garcia S, Grosse P, Rabaud W, Szelag B 2019 Opt. Express 27 5851Google Scholar

    [21]

    Wang P F, Luo G Z, Xu Y, Li Y J, Su Y M, Ma J B, Wang R T, Yang Z X, Zhou X L, Zhang Y J, Pan J Q 2020 Photonics Res. 8 912Google Scholar

    [22]

    Zhou P, Liu Z, Wang X, Ma Y, Xu X 2009 Acta Opt. Sin. 29 2232

    [23]

    Gerchberg R W 1972 Optik 35 237

    [24]

    Chen C C, Miao J, Wang C, Lee T 2007 Phys. Rev. B 76 064113Google Scholar

    [25]

    Kingma D P, Ba J 2014 arXiv: 1412.6980 [cs.LG]

    [26]

    Reyad M, Sarhan A M, Arafa M 2023 Neural Comput. Appl. 35 17095Google Scholar

    [27]

    石顺祥, 张海兴, 刘劲松 2000 物理光学与应用光学(第三版) (西安: 西安电子科技大学出版社) 第139—149页

    Shi S X, Zhang H X, Liu J S 2000 Physical Optics and Applied Optics (3rd Ed.) (Xi’an: Xidian University Press) pp139–149

    [28]

    Wang Z H, Wu B B, Liao J L, Li X F, Wang C, Sun Y L, Jin L, Feng J B, Cao C Q 2023 Opt. Laser Technol. 157 108743Google Scholar

  • 图 1  OPA夫琅禾费衍射示意图

    Fig. 1.  Schematic diagram of Fraunhofer diffraction in OPA.

    图 2  OPA输出光束校准的Adam算法流程图

    Fig. 2.  Flowchart of the Adam algorithm for calibrating the OPA output beam.

    图 3  OPA输出光束校准的SPGD算法流程图

    Fig. 3.  Flowchart of the SPGD algorithm for calibrating the OPA output beam.

    图 4  使用Adam算法对不同阵列规模OPA输出光束校准结果 (a) 4×4阵列校准结果; (b) 8×8阵列校准结果; (c) 16×16阵列校准结果

    Fig. 4.  Different adjusting results of output beam in serial OPA with Adam algorithm: (a) Adjusting results of 4×4 array; (b) adjusting results of 8×8 array; (c) adjusting results of 16×16 array.

    图 5  使用SPGD, GS, Adam算法对4×4规模OPA输出光束校准结果 (a)不同算法优化仿真结果; (b) 优化迭代1000次不同算法评价函数曲线图汇总; (c) 优化不限次数不同算法评价函数曲线图汇总

    Fig. 5.  Different adjusting results of output beam with SPGD, GS, Adam algorithm in 4×4 OPA: (a) Simulation results with different algorithms; (b) collection of curve graphs of evaluation function when iterating 1000 times with different algorithms; (c) collection of curve graphs of evaluation function when iterating unlimited times with different algorithms.

    图 6  实验系统流程图

    Fig. 6.  Flow diagram of experiment system.

    图 7  仿真理论分布、Adam算法及SPGD算法输出光场三维图

    Fig. 7.  3D diagram of output light field with simulation model, Adam algorithm and SPGD algorithm.

    图 8  SPGD算法及Adam算法光束校准效果图 (a)不同迭代次数下Adam算法光场灰度图; (b) 不同迭代次数下SPGD算法光场灰度图; (c) Adam及SPGD算法评价函数曲线图

    Fig. 8.  Adjusting results of beam with SPGD and Adam algorithm: (a) Grey-scale map of different iterative times with Adam algorithm; (b) grey-scale map of different iterative times with SPGD algorithm; (c) curve graph of evaluation function with Adam and SPGD algorithm.

    图 9  (a)优化光场叠加图; (b)不同位置优化光场

    Fig. 9.  (a) Superposed figure of optimized light field; (b) optimized light field in different positions.

  • [1]

    Barker S, Rebeiz G M 1998 IEEE T. Microw. Theory 46 1881Google Scholar

    [2]

    Duewer B E, Wilson J M, Winick D A, Franzon P D 1999 Proceedings of SPIE-The International Society for Optical Engineering Gold Coast, Australia, October 8, 1999 p262

    [3]

    Hobbs R H, Cantor A J, Grantham D H, Shuskus A J, Berak J M, Cowher M E, Farina J D, Hoffman N N, Black J F, Drake G W, Brown R T, Holton C E, Silverman B B, Leonberger F J, Demaria A J 2002 Conference Proceedings LEOS Lasers and Electro-Optics Society Santa Clara, CA, USA, February 4, 1988 p94

    [4]

    Konforti N, Marom E, Wu S T 1988 Opt. Lett. 13 251Google Scholar

    [5]

    Malczewski A, Eshelman S, Pillans B, Ehmke J, Goldsmith C 1999 IEEE Microw. Guided W. 9 517Google Scholar

    [6]

    Pillans B, Eshelman S, Malczewski A, Ehmke J, Goldsmith C 2002 Radio Frequency Integrated Circuits (RFIC) Symposium: Digest of Papers Boston, MA, USA, June 11–13, 2000 p195

    [7]

    Meyer R A 1972 Appl. Opt. 11 613Google Scholar

    [8]

    Sun J, Hosseini E S, Yaacobi A, Cole D B, Leake G, Coolbaugh D, Watts M R 2014 Opt. Lett. 39 367Google Scholar

    [9]

    Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R 2013 Nature 493 195Google Scholar

    [10]

    Sun J, Timurdogan E, Yaacobi A, Su Z, Hosseini E S, Cole D B, Watts M R 2013 IEEE J. Sel. Top. Quant. 20 264Google Scholar

    [11]

    Yaacobi A, Sun J, Moresco M, Leake G, Coolbaugh D, Watts M R 2014 Opt. Lett. 39 4575Google Scholar

    [12]

    Mahon R, Preussner M W, Rabinovich W S, Goetz P G, Kozak D A, Ferraro M S, Murphy J L 2016 Free-Space Laser Communication and Atmospheric Propagation XXVIII San Francisco, California, USA, March 15, 2016 p224

    [13]

    Kim S H, You J B, Ha Y G, Kang G, Lee D S, Yoon H, Yoo D E, Lee D W, Yu K, Youn C H, Park H H 2019 Opt. Lett. 44 411Google Scholar

    [14]

    丁亚军, 钱盛友, 胡继文, 邹孝 2012 物理学报 61 144301Google Scholar

    Ding Y J, Qian Y S, Hu J W, Zou X 2012 Acta Phys. Sin. 61 144301Google Scholar

    [15]

    李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋 2021 物理学报 70 084205Google Scholar

    Li M F, Yuan Z H, Liu Y X, Deng Y C, Wang X F 2021 Acta Phys. Sin. 70 084205Google Scholar

    [16]

    Zhang H Y, Zhang Z X, Peng C, Hu W W 2020 IEEE Photonics J. 12 6600210Google Scholar

    [17]

    Leng L M, Zeng Z B, Wu G H, Lin Z Z, Ji X, Shi Z Y, Jiang W 2022 Photonics Res. 10 347Google Scholar

    [18]

    Notaros J, Poulton C V, Raval M, Watts M R 2018 J. Lightwave Technol. 36 5912Google Scholar

    [19]

    Raptakis A, Gounaridis L, Weigel M, Kleinert M, Georgiopoulos M, Mylonas E, Groumas P, Tsokos C, Keil N, Avramopoulos H 2021 J. Lightwave Technol. 39 6509Google Scholar

    [20]

    Tyler N A, Fowler D, Malhouitre S, Garcia S, Grosse P, Rabaud W, Szelag B 2019 Opt. Express 27 5851Google Scholar

    [21]

    Wang P F, Luo G Z, Xu Y, Li Y J, Su Y M, Ma J B, Wang R T, Yang Z X, Zhou X L, Zhang Y J, Pan J Q 2020 Photonics Res. 8 912Google Scholar

    [22]

    Zhou P, Liu Z, Wang X, Ma Y, Xu X 2009 Acta Opt. Sin. 29 2232

    [23]

    Gerchberg R W 1972 Optik 35 237

    [24]

    Chen C C, Miao J, Wang C, Lee T 2007 Phys. Rev. B 76 064113Google Scholar

    [25]

    Kingma D P, Ba J 2014 arXiv: 1412.6980 [cs.LG]

    [26]

    Reyad M, Sarhan A M, Arafa M 2023 Neural Comput. Appl. 35 17095Google Scholar

    [27]

    石顺祥, 张海兴, 刘劲松 2000 物理光学与应用光学(第三版) (西安: 西安电子科技大学出版社) 第139—149页

    Shi S X, Zhang H X, Liu J S 2000 Physical Optics and Applied Optics (3rd Ed.) (Xi’an: Xidian University Press) pp139–149

    [28]

    Wang Z H, Wu B B, Liao J L, Li X F, Wang C, Sun Y L, Jin L, Feng J B, Cao C Q 2023 Opt. Laser Technol. 157 108743Google Scholar

  • [1] 陈明徕, 马彩文, 刘辉, 罗秀娟, 冯旭斌, 岳泽霖, 赵晶. 基于快速采样的剪切光束成像图像重构算法. 物理学报, 2024, 73(2): 024202. doi: 10.7498/aps.73.20231254
    [2] 柯航, 李培丽, 施伟华. 基于下山单纯形算法逆向设计二维光子晶体波导型1×5分束器. 物理学报, 2022, 71(14): 144204. doi: 10.7498/aps.71.20220328
    [3] 陈明徕, 刘辉, 张羽, 罗秀娟, 马彩文, 岳泽霖, 赵晶. 剪切光束成像技术稀疏重构算法. 物理学报, 2022, 71(19): 194201. doi: 10.7498/aps.71.20220494
    [4] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比. 物理学报, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [5] 曹自强, 赛斌, 吕欣. 行人跟踪算法及应用综述. 物理学报, 2020, 69(8): 084203. doi: 10.7498/aps.69.20191721
    [6] 陆长明, 陈明徕, 罗秀娟, 张羽, 刘辉, 兰富洋, 曹蓓. 四光束剪切相干成像目标重构算法研究. 物理学报, 2017, 66(11): 114201. doi: 10.7498/aps.66.114201
    [7] 崔立红, 赵维宁, 颜昌翔. 高斯光束与谐振腔基模模式光路谐振匹配的分析与校准. 物理学报, 2015, 64(22): 224211. doi: 10.7498/aps.64.224211
    [8] 曹蓓, 罗秀娟, 司庆丹, 曾志红. 相干场成像四光束相位闭合算法研究. 物理学报, 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
    [9] 周建忠, 陈抱雪, 李家韡, 王关德, 浜中广见. 光波导脉冲耦合器研究. 物理学报, 2014, 63(1): 014211. doi: 10.7498/aps.63.014211
    [10] 王治昊, 王雅丽, 李拓, 史祎诗. 基于旋转相位编码与照明光束匹配的叠层衍射成像算法研究. 物理学报, 2014, 63(16): 164204. doi: 10.7498/aps.63.164204
    [11] 何然, 黄思训, 周晨腾, 姜祝辉. 遗传算法结合正则化方法反演海洋大气波导. 物理学报, 2012, 61(4): 049201. doi: 10.7498/aps.61.049201
    [12] 郑皓洲, 胡进峰, 刘立东, 何子述. 快速混沌同步算法研究. 物理学报, 2011, 60(11): 110507. doi: 10.7498/aps.60.110507
    [13] 龚建强, 梁昌洪. 基于TE10矩形波导的异向介质有效本构参数提取算法. 物理学报, 2011, 60(5): 059204. doi: 10.7498/aps.60.059204
    [14] 盛峥, 黄思训. 雷达回波资料反演海洋波导的算法和抗噪能力研究. 物理学报, 2009, 58(6): 4328-4334. doi: 10.7498/aps.58.4328
    [15] 项 阳, 钱祖平, 刘 贤, 鲍峻松. 基于Drude-FDTD算法的单负介质组合填充波导传播特性研究. 物理学报, 2008, 57(9): 5537-5541. doi: 10.7498/aps.57.5537
    [16] 赵海军, 杜孟利. 算法对混沌体系逃逸率的影响. 物理学报, 2007, 56(7): 3827-3832. doi: 10.7498/aps.56.3827
    [17] 和红杰, 张家树. 基于混沌的自嵌入安全水印算法. 物理学报, 2007, 56(6): 3092-3100. doi: 10.7498/aps.56.3092
    [18] 张 维, 周淑华, 任 勇, 山秀明. Turbo译码算法的分岔与控制. 物理学报, 2006, 55(2): 622-627. doi: 10.7498/aps.55.622
    [19] 罗志勇, 杨丽峰, 陈允昌. 基于多光束干涉原理的相移算法研究. 物理学报, 2005, 54(7): 3051-3057. doi: 10.7498/aps.54.3051
    [20] 张静娟, 姬扬, 姚德成, 陈俊本. 遗传算法在激光束整形中的应用. 物理学报, 1996, 45(5): 789-795. doi: 10.7498/aps.45.789
计量
  • 文章访问数:  1785
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-08
  • 修回日期:  2024-02-16
  • 上网日期:  2024-02-28
  • 刊出日期:  2024-05-05

/

返回文章
返回