搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微波表面等离激元的360电扫描多波束天线

韩亚娟 张介秋 李勇峰 王甲富 屈绍波 张安学

引用本文:
Citation:

基于微波表面等离激元的360电扫描多波束天线

韩亚娟, 张介秋, 李勇峰, 王甲富, 屈绍波, 张安学

360 scanning multi-beam antenna based on spoof surface plasmon polaritons

Han Ya-Juan, Zhang Jie-Qiu, Li Yong-Feng, Wang Jia-Fu, Qu Shao-Bo, Zhang An-Xue
PDF
导出引用
  • 基于微波表面等离激元提出了一种电扫描多波束天线. 该多波束天线由24条相同的端射天线绕同一圆心旋转而成, 相邻端射天线之间的夹角为15. 单条端射天线的设计基于微波表面等离激元的耦合, 将馈电单极子辐射的全向场调制为端射的定向场. 仿真结果表明, 提出的基于微波表面等离激元的多波束天线, 在9.5-10.25 GHz频段内可实现面内360 波束扫描, 且平均增益约为11.8 dBi, 半功率波束宽度约为15.
    A multi-beam antenna based on spoof surface plasmon polariton (SSPP) is proposed, which is composed of 24 identical end-fire antennas rotating around the center of the circle. Thus the angle between any two end-fire antennas is 15. Every single end-fire antenna consists of feeding monopole and periodic metallic blade structure sandwiched between two identical 0.5 mm-thick F4B substrates (r=2.65, tan()=0.001). And the periodic metallic blade structure can be regarded as two regions. The first region (Region I) is a double-side corrugated metallic strips with continuous gradient height, so that the SSPP has a linear propagation constant distribution on the strips. Good matching of both impedance and wave vectors between spatial wave and SSPP waveguide ensures the conversion of high-efficiency from spatial modes into SSPP modes and that of high-efficiency radiation from SSPP modes into spatial modes. The second region (Region II) is the transition part of the SSPP wave with constant blade height. Geometric parameters are optimized by using CST Microwave Studio and the dimension of the single end-fire antenna is 111 mm15.2 mm1 mm. A prototype is fabricated and tested, showing good agreement between numerical simulation and experimental results, which proves that the electromagnetic wave of the monopole is successfully coupled and nearly completely confined on the metallic blade structure, and radiated at the end of the blade, resulting in omnidirectional radiation pattern of the monopole being mediated to directive beam steering at end fire. Rotate the 24 identical antennas around the center of the circle with respect to a cylinder, namely the proposed 360 scanning multi-beam antenna in this paper. The optimized radius of the proposed antenna cylinder is set to be 128 mm. The simulated and measured results are consistent with each other and clearly indicate that the proposed multi-beam antenna shows a scanning capability over 360 in the xoy plane with an average directivity of approximately 11.8 dBi and 3 dB angular width of 15 in operation bandwidth 9.5-10.25 GHz. Changing the geometric parameters of the blade structure, the characteristics of the gain, bandwidth, and 3 dB angular width for multi-beam antenna will be also changed. Unlike traditional multi-beam antennas, the proposed antenna based on SSPP mode coupling is no longer limited to the principle of geometrical optics, but mediates the omnidirectional radiation pattern of the monopole to directive beam by utilizing great confinement property of SSPP, which gives high degree of freedom for designing the multi-beam antennas. Besides, derived from the characteristics of deep-subwavelength and localized field enhancement for SSPPs, the proposed multi-beam antenna obtains many advantages, such as low profile, simple structure, high realizability, and important application values.
      通信作者: 张介秋, zhangjiq0@163.com
    • 基金项目: 国家自然科学基金(批准号:61331005,61501503,11274389,61471388)和陕西省创新团队(批准号:2014KCT-05)资助的课题.
      Corresponding author: Zhang Jie-Qiu, zhangjiq0@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 61501503, 11274389, 61471388) and the Science and Technology Innovation Team of Shaanxi Province, China (Grant No. 2014KCT-05).
    [1]

    Zhang J, Wu W, Fang D G 2011 IEEE Electron. Lett. 47 298

    [2]

    Mauro E, Ronan S, Laurent L C 2011 IEEE Trans. Antennas Propag. 59 1093

    [3]

    Mohamad S, Momeni A, Abadi H, Behdad N 2014 IEEE Antennas and Propagation Society International Symposium Memphis, Tennessee, USA, July 6-11, 2014 p926

    [4]

    Zhen L, Zhao Q, Luo X G, Ma P, Liu S Z, Huang C, Xing X J, Zhang C Y, Chen X L 2012 Acta Phys. Sin. 61 155203 (in Chinese) [郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖 2012 物理学报 61 155203]

    [5]

    Zhao G W, Xu Y M, Chen C 2007 Acta Phys. Sin. 56 5298 (in Chinese) [赵国伟, 徐跃民, 陈诚 2007 物理学报 56 5298]

    [6]

    Huang F Y, Shi J M, Yuan Z C, Wang J C, Xu B, Chen Z S, Wang C 2013 Acta Phys. Sin. 62 155201 (in Chinese) [黄方意, 时家明, 袁忠才, 汪家春, 许波, 陈宗胜, 王超] 2013 物理学报 62 155201]

    [7]

    Pendry J B, Martin-Moreno L, Carcia-Vidal F J 2014 Science 305 847

    [8]

    Shen X P, Cui T J, Martin-Cano, Carcia-Vidal F J 2013 Proc. Natl. Acad. Sci. U.S.A. 110 40

    [9]

    Liu L L, Li Z, Xu B Z, Ning P P, Chen C, Xu J, Chen X L, Gu C Q 2015 Appl. Phys. Lett. 107 201602

    [10]

    Xiang H, Meng Y, Zhang Q, Qin F F, Xiao J J, Han D Z, Wen W J 2015 Opt. Commun. 356 59

    [11]

    Wan X, Yin J Y, Zhang H C, Cui T J 2014 Appl. Phys. Lett. 105 083502

    [12]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Feng M D, Wang J, Xu Z 2016 Opt. Express 24 842

  • [1]

    Zhang J, Wu W, Fang D G 2011 IEEE Electron. Lett. 47 298

    [2]

    Mauro E, Ronan S, Laurent L C 2011 IEEE Trans. Antennas Propag. 59 1093

    [3]

    Mohamad S, Momeni A, Abadi H, Behdad N 2014 IEEE Antennas and Propagation Society International Symposium Memphis, Tennessee, USA, July 6-11, 2014 p926

    [4]

    Zhen L, Zhao Q, Luo X G, Ma P, Liu S Z, Huang C, Xing X J, Zhang C Y, Chen X L 2012 Acta Phys. Sin. 61 155203 (in Chinese) [郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖 2012 物理学报 61 155203]

    [5]

    Zhao G W, Xu Y M, Chen C 2007 Acta Phys. Sin. 56 5298 (in Chinese) [赵国伟, 徐跃民, 陈诚 2007 物理学报 56 5298]

    [6]

    Huang F Y, Shi J M, Yuan Z C, Wang J C, Xu B, Chen Z S, Wang C 2013 Acta Phys. Sin. 62 155201 (in Chinese) [黄方意, 时家明, 袁忠才, 汪家春, 许波, 陈宗胜, 王超] 2013 物理学报 62 155201]

    [7]

    Pendry J B, Martin-Moreno L, Carcia-Vidal F J 2014 Science 305 847

    [8]

    Shen X P, Cui T J, Martin-Cano, Carcia-Vidal F J 2013 Proc. Natl. Acad. Sci. U.S.A. 110 40

    [9]

    Liu L L, Li Z, Xu B Z, Ning P P, Chen C, Xu J, Chen X L, Gu C Q 2015 Appl. Phys. Lett. 107 201602

    [10]

    Xiang H, Meng Y, Zhang Q, Qin F F, Xiao J J, Han D Z, Wen W J 2015 Opt. Commun. 356 59

    [11]

    Wan X, Yin J Y, Zhang H C, Cui T J 2014 Appl. Phys. Lett. 105 083502

    [12]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Feng M D, Wang J, Xu Z 2016 Opt. Express 24 842

  • [1] 安腾远, 丁霄, 王秉中. 基于时间反演技术的复杂天线罩辐射波束畸变纠正. 物理学报, 2023, 72(3): 030401. doi: 10.7498/aps.72.20221767
    [2] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [5] 杨浩楠, 曹祥玉, 高军, 杨欢欢, 李桐. 基于宽波束磁电偶极子天线的宽角扫描线性相控阵列. 物理学报, 2021, 70(1): 014101. doi: 10.7498/aps.70.20201104
    [6] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [7] 殷允桥, 吴宏伟. 基于人工表面等离激元结构的超表面磁镜. 物理学报, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [8] 管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊. 表面等离极化激元的散射及波前调控. 物理学报, 2020, 69(15): 157804. doi: 10.7498/aps.69.20200614
    [9] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [10] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身. 物理学报, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [11] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [12] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [13] 耿逸飞, 王铸宁, 马耀光, 高飞. 拓扑表面等离激元. 物理学报, 2019, 68(22): 224101. doi: 10.7498/aps.68.20191085
    [14] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [15] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [16] 张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉. 平面金属等离激元美特材料对光学Tamm态及相关激射行为的增强作用. 物理学报, 2015, 64(11): 114202. doi: 10.7498/aps.64.114202
    [17] 张金玲, 万文钢, 郑占奇, 甘曦, 朱兴宇. X波段微带余割平方扩展波束天线阵赋形优化遗传算法研究. 物理学报, 2015, 64(11): 110504. doi: 10.7498/aps.64.110504
    [18] 刘红喜, 高军, 曹祥玉, 刘艳芳, 张迪, 李思佳. 一种基于开口谐振环的高增益端射天线设计. 物理学报, 2015, 64(23): 234101. doi: 10.7498/aps.64.234101
    [19] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [20] 陈建军, 李 智, 张家森, 龚旗煌. 基于电光聚合物的表面等离激元调制器. 物理学报, 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
计量
  • 文章访问数:  6714
  • PDF下载量:  477
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-09
  • 修回日期:  2016-05-05
  • 刊出日期:  2016-07-05

/

返回文章
返回