搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时间反演技术的复杂天线罩辐射波束畸变纠正

安腾远 丁霄 王秉中

引用本文:
Citation:

基于时间反演技术的复杂天线罩辐射波束畸变纠正

安腾远, 丁霄, 王秉中

Time-inversion technique based correction of complex radome radiation beam distortion

An Teng-Yuan, Ding Xiao, Wang Bing-Zhong
PDF
HTML
导出引用
  • 由于复杂电磁媒质构成、特殊外形轮廓以及复杂电磁工作环境等因素, 天线罩辐射电磁波往往出现指向角偏差、波束畸变等现象. 为此, 本文基于时间反演电磁波的自适应聚焦特性, 以顶部劈尖天线罩和结冰状态天线罩为研究案例, 系统性地提出了基于时间反演技术的复杂天线罩辐射波束畸变纠正方法. 研究结果显示: 在C波段, 对于顶部劈尖天线罩, 可以将±10°的辐射波束指向误差缩小到±0.9°. 对于结冰状态天线罩, 原本湮灭的主波束得到了重新的汇聚. 本文所提出的方法为复杂天线罩的分析以及在复杂媒质中电波传播的分析提供了有效途径.
    In the electromagnetic wave radiated by radome, there often occur pointing angle deviation, beam distortion and other phenomena, due to the complex electromagnetic medium composition, special contour and complex working environments. For conventional optimization methods, harsh and complex situations increase its workload, especially in the case that the specific location parameter information is unknown. In this paper, a method with time-inversion technique for correcting the radiation beam distortion of the complex radome is proposed. With the time-inversionl method, the concrete parameters of different positions for the radome and the surrounding environment information are not necessary to be determined in advance. The derivation shows that the environmental information is eliminated adaptively by the conjugate convolution operation, and it is proved by numerical operation that the signal of maximum radiation gain in target angle is time-inversion signal. Then based on the adaptive focusing properties of time-inversion electromagnetic waves, a top wedge radome and an icing working radome are taken as the case study. The equal amplitude phase shifting serves as the control group to highlight the advantages of time-reversal. In the end, the results show that the radiation beam pointing error can be reduced from ±10° to ±0.9° within ±45° scanning range for the top wedge radome in C-band. And the annihilated main beam can be converged again for the radome in the icing state. In addition, all the improvements are in a broadband range, and the robustness of the entire radome system is enhanced by increasing target angle energy caused by the increasing the directionality of the array radiation and the narrowing the 3 dB beamwidth. This paper provides an effective method of analyzing the complex radomes and radio wave propagations in complex media.
      通信作者: 丁霄, xding@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62171093)资助的课题
      Corresponding author: Ding Xiao, xding@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62171093).
    [1]

    张强 2014 天线罩理论与设计方法 (北京: 国防工业出版社) 第3, 4页

    Zhang Q 2014 Radome Theory and Design Methods (Vol. 1) (Beijing: National Defense Industry Press) pp3, 4 (in Chinese)

    [2]

    刘晓春 2017 雷达天线罩电性能设计技术 (北京: 航空工业出版社) 第1页

    Liu X C 2017 Radome Electrical Performance Design Technology (Vol. 1) (Beijing: Aviation Industry Press) p1 (in Chinese)

    [3]

    Cady W M, Karelity M B, Turner Lous A 1948 Radar Scanners and Radomes (Vol. 26, Chapter. 13) (New York: MicGraw-Hill Book Company)

    [4]

    Kay A L 1965 IEEE Trans. Antennas Propag. 13 188Google Scholar

    [5]

    张强 2014 天线罩理论与设计方法 (北京: 国防工业出版社) 第51—59页

    Zhang Q 2014 Radome Theory and Design Methods (Vol. 1) (Beijing: National Defense Industry Press) pp51–59 (in Chinese)

    [6]

    Cha C C 1982 IEEE International Symposium on Electromagnetic Compatibility Santa Clara, CA, USA, September 08–10 p1

    [7]

    Paris D 1970 IEEE Trans. Antennas Propag. 18 7Google Scholar

    [8]

    Deschamps G A 1972 Proceedings of the IEEE 60 1022Google Scholar

    [9]

    张强 1996 现代雷达 18 57

    Zhang Q 1996 Modern Radar 18 57

    [10]

    张强 2014 天线罩理论与设计方法 (北京: 国防工业出版社) 第68, 69页

    Zhang Q 2014 Radome Theory and Design Methods (Vol. 1) (Beijing: National Defense Industry Press) pp68, 69 (in Chinese)

    [11]

    Mittea R, Chan C H, Cwik T 1988 Proceedings of the IEEE 76 1593Google Scholar

    [12]

    Shifflett J A 1997 IEEE Antennas Propag. Mag. 39 73Google Scholar

    [13]

    Xu W Y, Zong Y, Peng L, Qiu Y Y 2021 IEEE Trans. Antennas Propag. 69 2443Google Scholar

    [14]

    Xu W Y, Duan B Y, Peng L, Qiu Y Y 2017 IEEE Trans. Antennas Propag. 65 3175Google Scholar

    [15]

    Zhang Q 2009 3rd European Conference on Antennas and Propagation Berlin, Germany, March 23–27, 2009 p3718

    [16]

    Liu Y, Zhao X X, Ouyang S X, Liu J 2018 The 8th Youth Science and Technology Forum of CAAC Jiangmen, China, November 5, 2018 p989 (in Chinese) [刘毅, 赵晓霞, 欧阳绍修, 刘建平 2018 第八届中国航空学会青年科技论坛 中国江门, 2018年11月5日 p989]

    [17]

    H A Burger 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, August 25 p313

    [18]

    Wu R Y, Li Y B, Wu W, Shi C B, Cui T J 2017 IEEE Trans. Antennas Propag. 65 3481Google Scholar

    [19]

    Luo X Y, Guo W L, Chen K, Zhao J M, Jiang T, Liu Y, Feng Y J 2021 IEEE Trans. Antennas Propag. 69 3332Google Scholar

    [20]

    Zhang N, Chen K, Zhao J M, Hu Q, Tang K, Zhao J M, Feng Y J 2022 IEEE Trans. Antennas Propag. 70 7403Google Scholar

    [21]

    张娜, 赵建民, 陈克, 赵俊明, 姜田, 冯一军 2021 物理学报 70 178102Google Scholar

    Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178102Google Scholar

    [22]

    Fink M 1997 Phys. Today 50 34Google Scholar

    [23]

    梁木生, 王秉中, 章志敏, 丁帅, 臧锐 2013 物理学报 62 058401Google Scholar

    Liang M S, Wang B Z, Zhang Z M, Ding S, Zang R 2013 Acta Phys. Sin. 62 058401Google Scholar

    [24]

    张知原, 李冰, 刘仕奇, 张洪林, 胡斌杰, 赵德双, 王楚楠 2022 物理学报 71 014101Google Scholar

    Zhang Z Y, Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Wang C N 2022 Acta Phys. Sin. 71 014101Google Scholar

    [25]

    张倩倩, 尹成友, 李安琪 2022 微波学报 038 18

    Zhang Q Q, Yi C Y, Li A Q 2022 Journal of Microwaves 038 18

    [26]

    陈伟, 陈蕾, 邹林, 史小卫, 李桂红, 洪玮 2022 电波科学学报 37 956

    Chen W, Chen L, Zou L, Shi X W, Li G H, Hong W 2022 Chinese Journal of Radio Science 37 956

    [27]

    Jia Q S, Ding S, Dong H B, Han X, Zhu Z J, Wang B Z, Huang Y M, Maurizio Bozzi 2021 IEEE Access. 9 30677Google Scholar

    [28]

    Zhao D S, Jin Y W, Wang B Z, Zang R 2012 IEEE Trans. Antennas Propag. 60 164Google Scholar

    [29]

    Nguyen H T, Kovcs I Z, P C F Eggers 2006 IEEE Trans. Antennas Propag. 54 3216Google Scholar

    [30]

    王秉中, 王任 2020 时间反演电磁学 (北京: 科学出版社) 第202—206页

    Wang B Z, Wang R 2020 Time Reversal Electromagnetism (Beijing: Science Press) pp202–206 (in Chinese)

    [31]

    Farr E G, Baum C E 1998 Time Domain Characterization of Antennas with TEM Feeds (Sensor and Simulation Notes) Note 426

    [32]

    Baum C E 2002 IEEE Trans. Electromagn. Compat. 44 18Google Scholar

    [33]

    Smith G S 2004 IEEE Trans. Antennas Propag. 52 1568Google Scholar

    [34]

    约翰 J D, 马赫夫克 R J 著 (章文勋 译) 2019 天线 (北京: 电子工业出版社) 第16—19页

    Kraus J D, Marhefka R J (translated by Zhang W X) 2019 Antennas: For All Applications (Beijing: Publishing House of Electronics Industry) pp16–19 (in Chinese)

    [35]

    Wi S H, Lee Y S, Yook J G 2007 IEEE Trans. Antennas Propag. 55 1196Google Scholar

    [36]

    Gao X, Felsen L 1985 IEEE Trans. Antennas Propag. 33 963Google Scholar

  • 图 1  基于时间反演的天线罩下阵列辐射方法

    Fig. 1.  Radiation method of array antenna under radome based on time reversal.

    图 2  8元线阵

    Fig. 2.  8-element linear array.

    图 3  目标角度为(+30°, 0°)时, 阵列天线单元2和单元8的接收信号和反演信号 (a)接收信号(b)时间反演信号

    Fig. 3.  Received signal and time reversal signal of array antenna element 2 and element 8 when the target angle is (+30°, 0°): (a) The received signal; (b) the excitation signal by time reversal.

    图 4  顶部劈尖天线罩计算模型示意图

    Fig. 4.  Schematic diagram of calculation model of top wedge radome.

    图 5  时间反演和传统方法归一化辐射方向图对比(颜色条表示辐射场的相对场强(归一化模值)) (a)目标角度–30°, 5 GHz 传统相扫辐射方向图; (b) 目标角度–30°, 5 GHz 时间反演辐射方向图; (c)目标角度–30°, 6 GHz 传统相扫辐射方向图; (d) 目标角度–30°, 6 GHz 时间反演辐射方向图; (e)目标角度+45°, 5 GHz 传统相扫辐射方向图; (f) 目标角度+45°, 5 GHz 时间反演辐射方向图; (g)目标角度+45°, 6 GHz 传统相扫辐射方向图; (h) 目标角度+45°, 6 GHz 时间反演辐射方向图

    Fig. 5.  Comparison of normalized radiation pattern between time reversal and traditional methods: (a) The 5 GHz traditional phase scan radiation pattern when the target angle is –30°; (b) the 5 GHz time reversal radiation pattern when the target angle is –30°; (c) the 6 GHz traditional phase scanning radiation pattern when the target angle is –30°; (d) the 6 GHz time reversal radiation pattern when the target angle is –30°; (e) the 5 GHz traditional phase scanning radiation pattern when the target angle is +45°; (f) the 5 GHz time reversal radiation pattern when the target angle is +45°; (g) the 6 GHz traditional phase scanning radiation pattern when the target angle is +45°; (h) the 6 GHz time reversal radiation pattern when the target angle is +45°.

    图 6  表面积冰天线罩覆盖在阵列天线

    Fig. 6.  Rrray antenna under the ice on the radome surface.

    图 7  目标波束指向–45°时传统方法和时间反演方法在远场的实际增益图 (a)传统方法增益图; (b)时间反演方法增益图

    Fig. 7.  Realized gain pattern of target angle –45° (linear): (a) The pattern of traditional method; (b) the pattern of time reversal.

    图 8  目标波束指向+45°时传统方法和时间反演方法在远场的实际增益图 (a)传统方法增益图; (b)时间反演方法增益图

    Fig. 8.  Realized gain pattern of target angle +45° (linear): (a) The pattern of traditional method; (b) the pattern of time reversal.

    图 9  目标波束指向0°时传统方法和时间反演方法在远场的实际增益图 (a)传统方法增益图; (b)时间反演方法增益图

    Fig. 9.  Realized gain pattern of target angle 0° (linear): (a) The pattern of traditional method; (b) the pattern of time reversal.

    表 1  无覆盖阵列天线传统方法与时间反演方法的阵列辐射结果

    Table 1.  Radiation results of array antenna by traditional method and time reversal.

    目标/(°)传统方法本文方法
    实际波束指向/(°)目标方向增益/dBi实际波束指向/(°)目标方向增益/dBi
    5 GHz6 GHz5 GHz6 GHz5 GHz6 GHz5 GHz6 GHz
    00013.211.40013.814.9
    +15+14.7+14.811.710.4+14.8+14.913.814.7
    +30+29.3+29.613.514.2+29.5+29.713.614.2
    +45+43.1+43.413.013.2+43.4+43.913.113.2
    下载: 导出CSV

    表 2  无覆盖阵列天线传统方法与时间反演方法的阵列辐射3 dB宽度对比结果

    Table 2.  The 3 dB beamwidth of array antenna radiation by traditional method and time reversal.

    目标/(°)传统方法本文方法
    5 GHz6 GHz5 GHz6 GHz
    3 dB波束
    宽度/(°)
    015.012.614.912.6
    +1515.613.115.413.1
    +3017.214.717.014.8
    +4520.217.520.117.3
    下载: 导出CSV

    表 3  顶部劈尖天线罩下传统方法与时间反演阵列辐射结果

    Table 3.  Results of array radiation by traditional method and time reversal under the top wedge radome.

    目标/(°)传统方法本文方法
    实际波束指向/(°)目标方向增益/dBi实际波束指向/(°)目标方向增益/dBi
    5 GHz6 GHz5 GHz6 GHz5 GHz6 GHz5 GHz6 GHz
    –45–31.5–31.78.79.2–44.3–44.212.312.9
    –30–19.0–20.55.510.7–29.2–29.315.316.6
    –15–5.7–6.112.811.4–14.6–14.716.317.0
    0+8.3+8.613.211.4+0.3–0.216.817.2
    +15+23.7+25.111.710.4+14.3+14.616.217.0
    +30+42.2+38.78.413.2+30.6+29.113.615.9
    +45无较强主瓣+42.0+43.314.515.1
    下载: 导出CSV

    表 4  顶部劈尖天线罩下传统方法与时间反演阵列辐射3 dB波束宽度对比结果

    Table 4.  The 3 dB beam width of array antenna radiation by traditional method and time reversal under top wedge radome.

    目标/(°)传统方法本文方法
    5 GHz6 GHz5 GHz6 GHz
    3 dB波束
    宽度/(°)
    –4517.113.919.518.8
    –3016.514.516.314.1
    –1515.612.814.912.8
    016.213.213.412.9
    +1519.014.717.513.0
    +3026.114.116.114.0
    +45无较强主瓣19.313.8
    下载: 导出CSV
  • [1]

    张强 2014 天线罩理论与设计方法 (北京: 国防工业出版社) 第3, 4页

    Zhang Q 2014 Radome Theory and Design Methods (Vol. 1) (Beijing: National Defense Industry Press) pp3, 4 (in Chinese)

    [2]

    刘晓春 2017 雷达天线罩电性能设计技术 (北京: 航空工业出版社) 第1页

    Liu X C 2017 Radome Electrical Performance Design Technology (Vol. 1) (Beijing: Aviation Industry Press) p1 (in Chinese)

    [3]

    Cady W M, Karelity M B, Turner Lous A 1948 Radar Scanners and Radomes (Vol. 26, Chapter. 13) (New York: MicGraw-Hill Book Company)

    [4]

    Kay A L 1965 IEEE Trans. Antennas Propag. 13 188Google Scholar

    [5]

    张强 2014 天线罩理论与设计方法 (北京: 国防工业出版社) 第51—59页

    Zhang Q 2014 Radome Theory and Design Methods (Vol. 1) (Beijing: National Defense Industry Press) pp51–59 (in Chinese)

    [6]

    Cha C C 1982 IEEE International Symposium on Electromagnetic Compatibility Santa Clara, CA, USA, September 08–10 p1

    [7]

    Paris D 1970 IEEE Trans. Antennas Propag. 18 7Google Scholar

    [8]

    Deschamps G A 1972 Proceedings of the IEEE 60 1022Google Scholar

    [9]

    张强 1996 现代雷达 18 57

    Zhang Q 1996 Modern Radar 18 57

    [10]

    张强 2014 天线罩理论与设计方法 (北京: 国防工业出版社) 第68, 69页

    Zhang Q 2014 Radome Theory and Design Methods (Vol. 1) (Beijing: National Defense Industry Press) pp68, 69 (in Chinese)

    [11]

    Mittea R, Chan C H, Cwik T 1988 Proceedings of the IEEE 76 1593Google Scholar

    [12]

    Shifflett J A 1997 IEEE Antennas Propag. Mag. 39 73Google Scholar

    [13]

    Xu W Y, Zong Y, Peng L, Qiu Y Y 2021 IEEE Trans. Antennas Propag. 69 2443Google Scholar

    [14]

    Xu W Y, Duan B Y, Peng L, Qiu Y Y 2017 IEEE Trans. Antennas Propag. 65 3175Google Scholar

    [15]

    Zhang Q 2009 3rd European Conference on Antennas and Propagation Berlin, Germany, March 23–27, 2009 p3718

    [16]

    Liu Y, Zhao X X, Ouyang S X, Liu J 2018 The 8th Youth Science and Technology Forum of CAAC Jiangmen, China, November 5, 2018 p989 (in Chinese) [刘毅, 赵晓霞, 欧阳绍修, 刘建平 2018 第八届中国航空学会青年科技论坛 中国江门, 2018年11月5日 p989]

    [17]

    H A Burger 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Spokane, August 25 p313

    [18]

    Wu R Y, Li Y B, Wu W, Shi C B, Cui T J 2017 IEEE Trans. Antennas Propag. 65 3481Google Scholar

    [19]

    Luo X Y, Guo W L, Chen K, Zhao J M, Jiang T, Liu Y, Feng Y J 2021 IEEE Trans. Antennas Propag. 69 3332Google Scholar

    [20]

    Zhang N, Chen K, Zhao J M, Hu Q, Tang K, Zhao J M, Feng Y J 2022 IEEE Trans. Antennas Propag. 70 7403Google Scholar

    [21]

    张娜, 赵建民, 陈克, 赵俊明, 姜田, 冯一军 2021 物理学报 70 178102Google Scholar

    Zhang N, Zhao J M, Chen K, Zhao J M, Jiang T, Feng Y J 2021 Acta Phys. Sin. 70 178102Google Scholar

    [22]

    Fink M 1997 Phys. Today 50 34Google Scholar

    [23]

    梁木生, 王秉中, 章志敏, 丁帅, 臧锐 2013 物理学报 62 058401Google Scholar

    Liang M S, Wang B Z, Zhang Z M, Ding S, Zang R 2013 Acta Phys. Sin. 62 058401Google Scholar

    [24]

    张知原, 李冰, 刘仕奇, 张洪林, 胡斌杰, 赵德双, 王楚楠 2022 物理学报 71 014101Google Scholar

    Zhang Z Y, Li B, Liu S Q, Zhang H L, Hu B J, Zhao D S, Wang C N 2022 Acta Phys. Sin. 71 014101Google Scholar

    [25]

    张倩倩, 尹成友, 李安琪 2022 微波学报 038 18

    Zhang Q Q, Yi C Y, Li A Q 2022 Journal of Microwaves 038 18

    [26]

    陈伟, 陈蕾, 邹林, 史小卫, 李桂红, 洪玮 2022 电波科学学报 37 956

    Chen W, Chen L, Zou L, Shi X W, Li G H, Hong W 2022 Chinese Journal of Radio Science 37 956

    [27]

    Jia Q S, Ding S, Dong H B, Han X, Zhu Z J, Wang B Z, Huang Y M, Maurizio Bozzi 2021 IEEE Access. 9 30677Google Scholar

    [28]

    Zhao D S, Jin Y W, Wang B Z, Zang R 2012 IEEE Trans. Antennas Propag. 60 164Google Scholar

    [29]

    Nguyen H T, Kovcs I Z, P C F Eggers 2006 IEEE Trans. Antennas Propag. 54 3216Google Scholar

    [30]

    王秉中, 王任 2020 时间反演电磁学 (北京: 科学出版社) 第202—206页

    Wang B Z, Wang R 2020 Time Reversal Electromagnetism (Beijing: Science Press) pp202–206 (in Chinese)

    [31]

    Farr E G, Baum C E 1998 Time Domain Characterization of Antennas with TEM Feeds (Sensor and Simulation Notes) Note 426

    [32]

    Baum C E 2002 IEEE Trans. Electromagn. Compat. 44 18Google Scholar

    [33]

    Smith G S 2004 IEEE Trans. Antennas Propag. 52 1568Google Scholar

    [34]

    约翰 J D, 马赫夫克 R J 著 (章文勋 译) 2019 天线 (北京: 电子工业出版社) 第16—19页

    Kraus J D, Marhefka R J (translated by Zhang W X) 2019 Antennas: For All Applications (Beijing: Publishing House of Electronics Industry) pp16–19 (in Chinese)

    [35]

    Wi S H, Lee Y S, Yook J G 2007 IEEE Trans. Antennas Propag. 55 1196Google Scholar

    [36]

    Gao X, Felsen L 1985 IEEE Trans. Antennas Propag. 33 963Google Scholar

  • [1] 闫轶著, 丁帅, 韩旭, 王秉中. 基于信道处理的时间反演幅度可调控多目标聚焦方法. 物理学报, 2023, 72(16): 164101. doi: 10.7498/aps.72.20230547
    [2] 安腾远, 丁霄. 基于角谱域和时间反演的任意均匀场的生成方法. 物理学报, 2023, 72(18): 180201. doi: 10.7498/aps.72.20230418
    [3] 陈传升, 王秉中, 王任. 基于时间反演技术的电磁器件端口场与内部场转换方法. 物理学报, 2021, 70(7): 070201. doi: 10.7498/aps.70.20201682
    [4] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测. 物理学报, 2019, 68(17): 170503. doi: 10.7498/aps.68.20190327
    [5] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性. 物理学报, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [6] 朱江, 王雁, 杨甜. 无线多径信道中基于时间反演的物理层安全传输机制. 物理学报, 2018, 67(5): 050201. doi: 10.7498/aps.67.20172134
    [7] 龚志双, 王秉中, 王任, 臧锐, 王晓华. 基于光栅结构的远场时间反演亚波长源成像. 物理学报, 2017, 66(4): 044101. doi: 10.7498/aps.66.044101
    [8] 陈秋菊, 姜秋喜, 曾芳玲, 宋长宝. 基于时间反演电磁波的稀疏阵列单频信号空间功率合成. 物理学报, 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [9] 屠惠琳, 肖绍球, 杨智杰, 王秉中. 基于时间反演电磁波的微结构天线的单频点超分辨力聚焦研究. 物理学报, 2014, 63(8): 084102. doi: 10.7498/aps.63.084102
    [10] 徐念喜, 高劲松, 冯晓国. 基于离散粒子群算法的频率选择表面优化设计研究. 物理学报, 2014, 63(13): 138401. doi: 10.7498/aps.63.138401
    [11] 冯菊, 廖成, 张青洪, 盛楠, 周海京. 蒸发波导中的时间反演抛物方程定位法. 物理学报, 2014, 63(13): 134101. doi: 10.7498/aps.63.134101
    [12] 鲁戈舞, 张剑, 杨洁颖, 张天翔, 寇元. 频率选择表面天线罩研究现状与发展趋势. 物理学报, 2013, 62(19): 198401. doi: 10.7498/aps.62.198401
    [13] 周洪澄, 王秉中, 丁帅, 欧海燕. 时间反演电磁波在金属丝阵列媒质中的超分辨率聚焦. 物理学报, 2013, 62(11): 114101. doi: 10.7498/aps.62.114101
    [14] 梁木生, 王秉中, 章志敏, 丁帅, 臧锐. 基于远场时间反演的亚波长天线阵列研究. 物理学报, 2013, 62(5): 058401. doi: 10.7498/aps.62.058401
    [15] 赵德双, 岳文君, 余敏, 张升学. 时间反演脉冲电磁波在双负材料中传播特性研究. 物理学报, 2012, 61(7): 074102. doi: 10.7498/aps.61.074102
    [16] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理. 物理学报, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [17] 章志敏, 王秉中, 葛广顶, 梁木生, 丁帅. 亚波长金属线阵中一维时间反演电磁波的聚焦机理研究. 物理学报, 2012, 61(9): 098401. doi: 10.7498/aps.61.098401
    [18] 丁帅, 王秉中, 葛广顶, 王多, 赵德双. 基于时间透镜原理实现微波信号时间反演. 物理学报, 2012, 61(6): 064101. doi: 10.7498/aps.61.064101
    [19] 章志敏, 王秉中, 葛广顶. 一种用于时间反演通信的亚波长天线阵列设计. 物理学报, 2012, 61(5): 058402. doi: 10.7498/aps.61.058402
    [20] 徐念喜, 冯晓国, 王岩松, 陈新, 高劲松. 微型化频率选择表面的设计研究. 物理学报, 2011, 60(11): 114102. doi: 10.7498/aps.60.114102
计量
  • 文章访问数:  4195
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-09
  • 修回日期:  2022-10-17
  • 上网日期:  2022-11-19
  • 刊出日期:  2023-02-05

/

返回文章
返回