搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石英晶片镀膜工艺的Ka波段天线副反射面设计与实现

夏步刚 张德海 赵鑫 易敏 黄健

引用本文:
Citation:

基于石英晶片镀膜工艺的Ka波段天线副反射面设计与实现

夏步刚, 张德海, 赵鑫, 易敏, 黄健

Design and implementation of sub-reflector for Ka band antenna based on quartz wafer coating technology

Xia Bu-Gang, Zhang De-Hai, Zhao Xin, Yi Min, Huang Jian
PDF
导出引用
  • 卫星通信系统中使用频率选择表面作为抛物面天线的副反射面, 是实现频率复用、提高天线工作效率的有效手段. 本文运用模匹配法对频率选择表面单元进行分析计算, 并采用精细石英晶片镀膜工艺, 实现了Ka波段的频率选择表面构成的天线副反射面. 数值和实验结果均表明, 该反射面具有良好的角度稳定性及交叉极化特性, 同时通带内的插入损耗和阻带的回波损耗都处于较低水平, 保证了天线在其工作频带内的高增益. Ka波段的频率选择表面副反射面的研制顺应了当今卫星通信宽频带、窄波束和小型化的发展趋势.
    The design, fabrication and performance of a frequency selective surface (FSS) which is required to operate as broadband sub-reflector of Ka band antenna for satellite communication application is proposed and validated experimentally. In order to obtain this spatial filter which exhibits low insertion losses and insensitivities to the variation of oblique incident angle for TE and TM polarized wave, the mode-matching method is applied to the analysis of the geometrical structure and electrical parameters of FSS unit cell, and the fabrication process of this Ka FSS sub-reflector utilizing sophisticated quartz wafer coating technology is described. Electromagnetic field simulations and measurements results demonstrate that this FSS filter has virtually identical spectral responses in the two polarization planes.
    [1]

    Munk B A 2000 Frequency Selective Surfaces Theory and Design (New York: Wiley) pp51-57

    [2]

    Tang G M, Miao J G, Dong J M 2012 Acta Phys. Sin. 61 068402 (in Chinese) [唐光明, 苗俊刚, 董金明 2012 物理学报 61 068402]

    [3]

    Xun N X, Feng X G, Wang Y S, Chen X, Gao J S 2011 Acta Phys. Sin. 60 114102 (in Chinese) [徐念喜, 冯晓国, 王岩松, 陈新, 高劲松 2011 物理学报 60 114102]

    [4]

    Taylor P S, Austin A C M, Parker E A, Neve M J, Batchelor J C, Yiin J P, Sowerby K W 2012 Electron. Lett. 48 61

    [5]

    Tang G M, Miao J G, Dong J M 2012 Chin. Phys. B 21 128401

    [6]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 147307 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 147307]

    [7]

    Zhou H, Qu S B, Peng W D, Lin B Q, Wang J F, Ma H, Zhang J Q, Bai P, Wang X H, Xu Z 2012 Chin. Phys. B 21 054101

    [8]

    Agrawal V, Imbriale W 1979 IEEE Trans. Antenn. Propag. 27 466

    [9]

    Zimmerman M L, Lee S W, Fujikawa G 1992 IEEE Trans. Antenn. Propag. 40 1264

    [10]

    Wu T K 1994 U.S. Patent 5 373 302 [1994-12-13]

    [11]

    Porco C C, Helfenstein P, Thomas P C, Ingersoll A P, Wisdom J, West R, Neukum G, Denk T, Wagner R, Roatsch T, Kieffer S, Turtle E, McEwen A, Johnson T V, Rathbun J, Veverka J, Wilson D, Perry J, Spitale J, Brahic A, Burns J A, DelGenio A D, Dones L, Murray C D, Squyres S 2006 Science 311 1393

    [12]

    Ramaccia D, Bilotti F, Toscano A, Vegni L 2013 Compel 32 8

    [13]

    Skokic S, Sipus Z, Maci S, Bosiljevac M, Casaletti M 2012 IEEE 6th European Conference on Antennas and Propagation Prague March 26-30, 2012 p3299

    [14]

    Fang F 2009 Electro-Mech. Engin. 25 12 (in Chinese) [方芳 2009 电子机械工程 25 12]

    [15]

    Laskar J, Lee C H 2011 Compact Ku-band Transmitter Design for Satellite Communication Applications: From System Analysis to Hardware Implementation (Switzerland: Springer) pp1-5

    [16]

    Toptsidis N, Arapoglou P D, Bertinelli M 2012 Int. J. Satell. Commun. N. 30 131

    [17]

    Chambers A P, Callaghan S A, Otung I E 2006 IEEE Trans. Antenn. Propag. 54 1380

    [18]

    Hein M, Bayer H, Kraus A, Stephan R, Volmer C, Heuberger A, Volkert T 2010 IEEE Proceedings of the Fourth European Conference on Antennas and Propagation Barcelona, April 12-16, 2010 p1

    [19]

    Xia B G, Meng J, Zhang D H, Zhang J S 2013 Prog. Electromagn. Res. 139 599

    [20]

    Dickie R, Cahill R, Mitchell N, Gamble H, Fusco V, Munro Y, Rea S 2010 Electron. Lett. 46 472

    [21]

    Tian G Y, Li Y, Mandache C 2009 IEEE Trans. Magn. 45 184

    [22]

    Vardaxoglou J C 1997 Frequency Selective Surfaces: Analysis and Design (Vol. 997) (London: Research Studies Press) pp110-125

    [23]

    Mittra R, Chan C H, Cwik T 1988 Proc. IEEE 76 1593

  • [1]

    Munk B A 2000 Frequency Selective Surfaces Theory and Design (New York: Wiley) pp51-57

    [2]

    Tang G M, Miao J G, Dong J M 2012 Acta Phys. Sin. 61 068402 (in Chinese) [唐光明, 苗俊刚, 董金明 2012 物理学报 61 068402]

    [3]

    Xun N X, Feng X G, Wang Y S, Chen X, Gao J S 2011 Acta Phys. Sin. 60 114102 (in Chinese) [徐念喜, 冯晓国, 王岩松, 陈新, 高劲松 2011 物理学报 60 114102]

    [4]

    Taylor P S, Austin A C M, Parker E A, Neve M J, Batchelor J C, Yiin J P, Sowerby K W 2012 Electron. Lett. 48 61

    [5]

    Tang G M, Miao J G, Dong J M 2012 Chin. Phys. B 21 128401

    [6]

    Wang X Z, Gao J S, Xu N X 2013 Acta Phys. Sin. 62 147307 (in Chinese) [王秀芝, 高劲松, 徐念喜 2013 物理学报 62 147307]

    [7]

    Zhou H, Qu S B, Peng W D, Lin B Q, Wang J F, Ma H, Zhang J Q, Bai P, Wang X H, Xu Z 2012 Chin. Phys. B 21 054101

    [8]

    Agrawal V, Imbriale W 1979 IEEE Trans. Antenn. Propag. 27 466

    [9]

    Zimmerman M L, Lee S W, Fujikawa G 1992 IEEE Trans. Antenn. Propag. 40 1264

    [10]

    Wu T K 1994 U.S. Patent 5 373 302 [1994-12-13]

    [11]

    Porco C C, Helfenstein P, Thomas P C, Ingersoll A P, Wisdom J, West R, Neukum G, Denk T, Wagner R, Roatsch T, Kieffer S, Turtle E, McEwen A, Johnson T V, Rathbun J, Veverka J, Wilson D, Perry J, Spitale J, Brahic A, Burns J A, DelGenio A D, Dones L, Murray C D, Squyres S 2006 Science 311 1393

    [12]

    Ramaccia D, Bilotti F, Toscano A, Vegni L 2013 Compel 32 8

    [13]

    Skokic S, Sipus Z, Maci S, Bosiljevac M, Casaletti M 2012 IEEE 6th European Conference on Antennas and Propagation Prague March 26-30, 2012 p3299

    [14]

    Fang F 2009 Electro-Mech. Engin. 25 12 (in Chinese) [方芳 2009 电子机械工程 25 12]

    [15]

    Laskar J, Lee C H 2011 Compact Ku-band Transmitter Design for Satellite Communication Applications: From System Analysis to Hardware Implementation (Switzerland: Springer) pp1-5

    [16]

    Toptsidis N, Arapoglou P D, Bertinelli M 2012 Int. J. Satell. Commun. N. 30 131

    [17]

    Chambers A P, Callaghan S A, Otung I E 2006 IEEE Trans. Antenn. Propag. 54 1380

    [18]

    Hein M, Bayer H, Kraus A, Stephan R, Volmer C, Heuberger A, Volkert T 2010 IEEE Proceedings of the Fourth European Conference on Antennas and Propagation Barcelona, April 12-16, 2010 p1

    [19]

    Xia B G, Meng J, Zhang D H, Zhang J S 2013 Prog. Electromagn. Res. 139 599

    [20]

    Dickie R, Cahill R, Mitchell N, Gamble H, Fusco V, Munro Y, Rea S 2010 Electron. Lett. 46 472

    [21]

    Tian G Y, Li Y, Mandache C 2009 IEEE Trans. Magn. 45 184

    [22]

    Vardaxoglou J C 1997 Frequency Selective Surfaces: Analysis and Design (Vol. 997) (London: Research Studies Press) pp110-125

    [23]

    Mittra R, Chan C H, Cwik T 1988 Proc. IEEE 76 1593

  • [1] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体. 物理学报, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] 王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍. 透明可开关的超宽带频率选择表面电磁屏蔽研究. 物理学报, 2024, 73(12): 124201. doi: 10.7498/aps.73.20240339
    [3] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计. 物理学报, 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [4] 张建, 高劲松, 徐念喜, 于淼. 基于混合周期栅网结构的频率选择表面设计研究. 物理学报, 2015, 64(6): 067302. doi: 10.7498/aps.64.067302
    [5] 兰峰, 高喜, 亓丽梅. 基于频率选择表面的双层改进型互补结构太赫兹带通滤波器研究. 物理学报, 2014, 63(10): 104209. doi: 10.7498/aps.63.104209
    [6] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [7] 焦健, 高劲松, 徐念喜, 冯晓国, 胡海翔. 基于传递函数的频率选择表面集总参数研究. 物理学报, 2014, 63(13): 137301. doi: 10.7498/aps.63.137301
    [8] 王岩松, 高劲松, 徐念喜, 汤洋, 陈新. 具有陡降特性的新型混合单元频率选择表面. 物理学报, 2014, 63(7): 078402. doi: 10.7498/aps.63.078402
    [9] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用. 物理学报, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [10] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制. 物理学报, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [11] 王秀芝, 高劲松, 徐念喜. 利用集总LC元件实现频率选择表面极化分离的特性. 物理学报, 2013, 62(14): 147307. doi: 10.7498/aps.62.147307
    [12] 王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面设计研究. 物理学报, 2013, 62(16): 167307. doi: 10.7498/aps.62.167307
    [13] 焦健, 徐念喜, 冯晓国, 梁凤超, 赵晶丽, 高劲松. 基于互补屏的主动频率选择表面设计研究. 物理学报, 2013, 62(16): 167306. doi: 10.7498/aps.62.167306
    [14] 张建, 高劲松, 徐念喜. 光学透明频率选择表面的设计研究. 物理学报, 2013, 62(14): 147304. doi: 10.7498/aps.62.147304
    [15] 陈新, 高劲松, 徐念喜, 王岩松, 冯晓国. 电介质桁架对频率选择表面传输特性的影响. 物理学报, 2012, 61(21): 217307. doi: 10.7498/aps.61.217307
    [16] 吴翔, 裴志斌, 屈绍波, 徐卓, 柏鹏, 王甲富, 王新华, 周航. 具有极化选择特性的超材料频率选择表面的设计. 物理学报, 2011, 60(11): 114201. doi: 10.7498/aps.60.114201
    [17] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [18] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [19] 高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红. 二阶Y环频率选择表面的设计研究. 物理学报, 2010, 59(10): 7338-7343. doi: 10.7498/aps.59.7338
    [20] 李小秋, 冯晓国, 高劲松. 光学透明频率选择表面的研究. 物理学报, 2008, 57(5): 3193-3197. doi: 10.7498/aps.57.3193
计量
  • 文章访问数:  6031
  • PDF下载量:  639
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-18
  • 修回日期:  2013-07-14
  • 刊出日期:  2013-10-05

/

返回文章
返回