搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用集总LC元件实现频率选择表面极化分离的特性

王秀芝 高劲松 徐念喜

引用本文:
Citation:

利用集总LC元件实现频率选择表面极化分离的特性

王秀芝, 高劲松, 徐念喜

Characteristics of polarization separation of frequency selective surface by lumped inductors and capacitors

Wang Xiu-Zhi, Gao Jin-Song, Xu Nian-Xi
PDF
导出引用
  • 基于电磁局域谐振的路谐振理论, 将集总LC器件加载到工字形周期阵列中, 设计了一种新型频率选择表面极化分离结构. 利用等效电路法分析了不同极化时该结构的作用机制, 并采用全波分析法研究了极化方式、入射角度和集总参数对其传输特性的影响.结果表明: 所设计的结构在6.37 GHz附近具有良好的极化分离特性; 在0°–40°扫描范围内, 横电(TE) 和横磁(TM) 极化下结构传输特性均保持稳定; 通过调控集总元件LC值, 该结构在保持 TE极化方向传输特性不变的同时, 可以实现对TM传输特性的独立调节, 使设计更加灵活.该结构为极化分离器以及极化波产生器的设计提供了借鉴.
    Based on the circuit resonance theory of the electromagnetic local resonance, a novel frequency selective surface structure with the property of polarization separation is designed by loading the lumped inductors and capacitors to the periodic array with “I” elements. The operation principle of the structure at all polarizations is analyzed by using the equivalent circuit method. And the influences of the polarization, incident angle and parameters of the lumped device on the transmission characteristics of the FSS are simulated and discussed by using the full-wave numerical analysis method. The results indicate that the designed structure has a good property of polarization separation at about 6.37 GHz, the transmission characteristics are stable with the scan angle increasing from 0° to 40° at TE and TM polarization, and by controlling the lumped inductors and capacitors, the transmission characteristics for TM polarization can be regulated independently while the transmission characteristics for TE polarization remain constant. The proposed structure is conductive to the designs of the polarization separator and the polarized wave generator.
    • 基金项目: 长春光机所创新三期工程项目(批准号: 093Y32J090)资助的课题.
    • Funds: Project supported by the Third Innovation of CIOMP (Grant No. 093Y32J090).
    [1]

    Munk B A 2000 Frequency Selective Surface: Theory and Design (1st Ed.) (New York: Wiley)

    [2]

    Wu T K 1995 Frequency-Selective Surface and Grid Array (New York: Wiley)

    [3]

    Vardaxoglou J C 1997 Frequency-Selective Surfaces: Analysis and Design (Taunton, UK: Research Studies Press)

    [4]

    Jia H Y, Gao J S, Feng X G, Sun L C 2009 Acta Phys. Sin. 58 505 (in Chinese) [贾宏燕, 高劲松, 冯晓国, 孙连春 2009 物理学报 58 505]

    [5]

    Li X Q, Gao J S, Zhao J L, Sun L C 2008 Acta Phys. Sin. 57 3803 (in Chinese) [李小秋, 高劲松, 赵晶丽, 孙连春 2008 物理学报 57 3803]

    [6]

    Wang K 2009 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [王珂 2009 硕士学位论文(成都: 电子科技大学)]

    [7]

    Bormemann J 1993 IEEE Trans. Antennas Propagat. 41 1588

    [8]

    Reed J A 1997 Ph. D. Dissertation (Dallas: The University of Texas at Dallas)

    [9]

    Schurig D, Mock J J, Smith R 2006 Appl. Phys. Lett. 88 041109

    [10]

    Wu X, Pei Z B, Qu S B, Xu Z, Bai P, Wang J F, Wang X H, Zhou H 2011 Acta Phys. Sin. 60 114201 (in Chinese) [吴翔, 裴志斌, 屈绍波, 徐卓, 柏鹏, 王甲富, 王新华, 周航 2011 物理学报 60 114201]

    [11]

    Amore M D, Santis V D, Feliziani M 2012 IEEE Trans. Magn. 48 703

    [12]

    Mittra R, Chan C H, Cwik T 1988 Proc. IEEE 76 1593

    [13]

    Williams A B, Taylor F J 1995 The Electronic Filter Design Handbook (3st Ed.) (New York: McGraw-Hill)

  • [1]

    Munk B A 2000 Frequency Selective Surface: Theory and Design (1st Ed.) (New York: Wiley)

    [2]

    Wu T K 1995 Frequency-Selective Surface and Grid Array (New York: Wiley)

    [3]

    Vardaxoglou J C 1997 Frequency-Selective Surfaces: Analysis and Design (Taunton, UK: Research Studies Press)

    [4]

    Jia H Y, Gao J S, Feng X G, Sun L C 2009 Acta Phys. Sin. 58 505 (in Chinese) [贾宏燕, 高劲松, 冯晓国, 孙连春 2009 物理学报 58 505]

    [5]

    Li X Q, Gao J S, Zhao J L, Sun L C 2008 Acta Phys. Sin. 57 3803 (in Chinese) [李小秋, 高劲松, 赵晶丽, 孙连春 2008 物理学报 57 3803]

    [6]

    Wang K 2009 M. S. Dissertation (Chengdu: University of Electronic Science and Technology) (in Chinese) [王珂 2009 硕士学位论文(成都: 电子科技大学)]

    [7]

    Bormemann J 1993 IEEE Trans. Antennas Propagat. 41 1588

    [8]

    Reed J A 1997 Ph. D. Dissertation (Dallas: The University of Texas at Dallas)

    [9]

    Schurig D, Mock J J, Smith R 2006 Appl. Phys. Lett. 88 041109

    [10]

    Wu X, Pei Z B, Qu S B, Xu Z, Bai P, Wang J F, Wang X H, Zhou H 2011 Acta Phys. Sin. 60 114201 (in Chinese) [吴翔, 裴志斌, 屈绍波, 徐卓, 柏鹏, 王甲富, 王新华, 周航 2011 物理学报 60 114201]

    [11]

    Amore M D, Santis V D, Feliziani M 2012 IEEE Trans. Magn. 48 703

    [12]

    Mittra R, Chan C H, Cwik T 1988 Proc. IEEE 76 1593

    [13]

    Williams A B, Taylor F J 1995 The Electronic Filter Design Handbook (3st Ed.) (New York: McGraw-Hill)

  • [1] 王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍. 抗方阻波动的超宽带轻薄频率选择表面吸波体. 物理学报, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] 王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍. 透明可开关的超宽带频率选择表面电磁屏蔽研究. 物理学报, 2024, 73(12): 124201. doi: 10.7498/aps.73.20240339
    [3] 周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山. S/X双频带吸波实时可调的吸波器. 物理学报, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [4] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计. 物理学报, 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [5] 张建, 高劲松, 徐念喜, 于淼. 基于混合周期栅网结构的频率选择表面设计研究. 物理学报, 2015, 64(6): 067302. doi: 10.7498/aps.64.067302
    [6] 王岩松, 高劲松, 徐念喜, 汤洋, 陈新. 具有陡降特性的新型混合单元频率选择表面. 物理学报, 2014, 63(7): 078402. doi: 10.7498/aps.63.078402
    [7] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用. 物理学报, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [8] 兰峰, 高喜, 亓丽梅. 基于频率选择表面的双层改进型互补结构太赫兹带通滤波器研究. 物理学报, 2014, 63(10): 104209. doi: 10.7498/aps.63.104209
    [9] 焦健, 高劲松, 徐念喜, 冯晓国, 胡海翔. 基于传递函数的频率选择表面集总参数研究. 物理学报, 2014, 63(13): 137301. doi: 10.7498/aps.63.137301
    [10] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制. 物理学报, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [11] 焦健, 高劲松, 徐念喜, 陈新. 基于互补屏的极化分离结构设计研究. 物理学报, 2013, 62(19): 197303. doi: 10.7498/aps.62.197303
    [12] 王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面设计研究. 物理学报, 2013, 62(16): 167307. doi: 10.7498/aps.62.167307
    [13] 焦健, 徐念喜, 冯晓国, 梁凤超, 赵晶丽, 高劲松. 基于互补屏的主动频率选择表面设计研究. 物理学报, 2013, 62(16): 167306. doi: 10.7498/aps.62.167306
    [14] 张建, 高劲松, 徐念喜. 光学透明频率选择表面的设计研究. 物理学报, 2013, 62(14): 147304. doi: 10.7498/aps.62.147304
    [15] 王秀芝, 高劲松, 徐念喜. 利用等效电路模型快速分析加载集总元件的微型化频率选择表面. 物理学报, 2013, 62(20): 207301. doi: 10.7498/aps.62.207301
    [16] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [17] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [18] 吴翔, 裴志斌, 屈绍波, 徐卓, 柏鹏, 王甲富, 王新华, 周航. 具有极化选择特性的超材料频率选择表面的设计. 物理学报, 2011, 60(11): 114201. doi: 10.7498/aps.60.114201
    [19] 高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红. 二阶Y环频率选择表面的设计研究. 物理学报, 2010, 59(10): 7338-7343. doi: 10.7498/aps.59.7338
    [20] 李小秋, 冯晓国, 高劲松. 光学透明频率选择表面的研究. 物理学报, 2008, 57(5): 3193-3197. doi: 10.7498/aps.57.3193
计量
  • 文章访问数:  6039
  • PDF下载量:  463
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-08
  • 修回日期:  2013-03-25
  • 刊出日期:  2013-07-05

/

返回文章
返回