搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ku/Ka波段双通带频率选择表面设计研究

王秀芝 高劲松 徐念喜

引用本文:
Citation:

Ku/Ka波段双通带频率选择表面设计研究

王秀芝, 高劲松, 徐念喜

Design and study of the dual-band frequency-selective surface operation at Ku/Ka-band

Wang Xiu-Zhi, Gao Jin-Song, Xu Nian-Xi
PDF
导出引用
  • 为了实现双通带频率选择表面(FSS)在较厚介质基底、 较大频带间隔和入射角度下的工程应用, 设计制备了一种性能优良的Ku/Ka波段双频FSS结构. 利用FSS栅瓣图分析了FSS具有稳定滤波特性的条件. 应用矢量模式匹配法计算了基于分形技术和复合图形技术的FSS的传输特性. 根据单元谐振模式和FSS传输特性归纳了厚介质基底、较远双通带FSS的设计原则, 最终优化出一种由方环复合Y环单元组成的FSS结构. 结果表明: 该结构在6.7 mm厚介质基底上0-45扫描范围内, 在Ku/Ka波段具有稳定的双频传输特性, 透过率均优于75%. 这为设计基底厚度较大、频带间隔较远、入射角度要求较高的双带FSS结构提供了理论参考与实验依据.
    In order to make the dual-band frequency-selective surface (FSS) used in the engineering conditions of thick substrate, wide band spacing and large incident angle, an FSS structure with dual-band at Ku-band and Ka-band is presented. The stable filtering condition of the FSS is analyzed by using the grating lobe diagram, and the transmission of the FSS with combination or fractal elements is calculated using the vector modal matching method. The design method of the dual-band FSS with thick substrate is obtained by analyzing the resonance mode of the element and the transmission of the FSS. By using those methods, an FSS with combination elements of the square and Y loops is designed. The simulated and tested results show that the dual-bands of the structure at Ku-band and Ka-band are stable and the transmissions of the two pass-bands are larger than 75% when the incident angle is varied from normal to 45. This paper provides some theoretical and experimental references for the design of the dual-band FSS with thick substrate, wide band spacing and large incident angle.
    • 基金项目: 长春光机所创新三期工程项目 (批准号: 093Y32J090) 资助的课题.
    • Funds: Project supported by the Third Innovation of Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences (Grant No. 093Y32J090).
    [1]

    Jia H Y, Gao J S, Feng X G, Sun L C 2009 Acta Phys. Sin. 58 505 (in Chinese) [贾宏燕, 高劲松, 冯晓国, 孙连春 2009 物理学报 58 505]

    [2]

    Li X Q, Gao J S, Zhao J L, Sun L C 2008 Acta Phys. Sin. 57 3803 (in Chinese) [李小秋, 高劲松, 赵晶丽, 孙连春 2008 物理学报 57 3803]

    [3]

    Munk B A 2000 Frequency Selective Surface: Theory and Design (1st Ed.) (New York: Wiley)

    [4]

    Wu T K 1995 Frequency-Selective Surface and Grid Array (New York: Wiley)

    [5]

    Li X Q, Gao J S, Feng X G 2008 Journal of Microwaves 24 7 (in Chinese) [李小秋, 高劲松, 冯晓国 2008 微波学报 24 7]

    [6]

    Salehi M, Behdad N 2008 IEEE Microwave and Wireless Components Letters 18 785

    [7]

    Gianvittorio P J, Romeu J, Blanch S, Rahamat-Samii Y 2003 IEEE Trans. Antennas Propapat. 18 3088

    [8]

    Gao J S, Wang S S, Feng X G, Xu N X, Zhao J L, Chen H 2010 Acta Phys. Sin. 59 7338 (in Chinese) [高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 物理学报 59 7338]

    [9]

    Wang S S, Gao J S, Liang F C, Wang Y S, Chen X 2011 Acta Phys. Sin. 60 050703 (in Chinese) [王珊珊, 高劲松, 梁凤超, 王岩松, 陈新 2011 物理学报 60 050703]

    [10]

    Raiva A P, Harackiewicz F J, Lindsey J 2003 Proceedings of the 27th Antenna Applications Symposium Monticello, Illinois, September 17-19, 2003 p107

    [11]

    Jia H Y, Gao J S, Feng X G, Sun L C 2008 Acta Opt. Sin. 28 1596 (in Chinese) [贾宏燕, 高劲松, 冯晓国, 孙连春 2008 光学学报 28 1596]

    [12]

    Arun K B 2005 Phased Array Antennas: Floquet Analysis, Synthesis, BFNs, and Active Array Systems (1st Ed.) (New York: Wiley)

    [13]

    Reed A J 1997 Ph. D. Dissertation (Texas: The University of Texas at Dallas)

    [14]

    Mittra R, Chan C H, Cwik T 1988 Proc. IEEE 76 1593

  • [1]

    Jia H Y, Gao J S, Feng X G, Sun L C 2009 Acta Phys. Sin. 58 505 (in Chinese) [贾宏燕, 高劲松, 冯晓国, 孙连春 2009 物理学报 58 505]

    [2]

    Li X Q, Gao J S, Zhao J L, Sun L C 2008 Acta Phys. Sin. 57 3803 (in Chinese) [李小秋, 高劲松, 赵晶丽, 孙连春 2008 物理学报 57 3803]

    [3]

    Munk B A 2000 Frequency Selective Surface: Theory and Design (1st Ed.) (New York: Wiley)

    [4]

    Wu T K 1995 Frequency-Selective Surface and Grid Array (New York: Wiley)

    [5]

    Li X Q, Gao J S, Feng X G 2008 Journal of Microwaves 24 7 (in Chinese) [李小秋, 高劲松, 冯晓国 2008 微波学报 24 7]

    [6]

    Salehi M, Behdad N 2008 IEEE Microwave and Wireless Components Letters 18 785

    [7]

    Gianvittorio P J, Romeu J, Blanch S, Rahamat-Samii Y 2003 IEEE Trans. Antennas Propapat. 18 3088

    [8]

    Gao J S, Wang S S, Feng X G, Xu N X, Zhao J L, Chen H 2010 Acta Phys. Sin. 59 7338 (in Chinese) [高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红 2010 物理学报 59 7338]

    [9]

    Wang S S, Gao J S, Liang F C, Wang Y S, Chen X 2011 Acta Phys. Sin. 60 050703 (in Chinese) [王珊珊, 高劲松, 梁凤超, 王岩松, 陈新 2011 物理学报 60 050703]

    [10]

    Raiva A P, Harackiewicz F J, Lindsey J 2003 Proceedings of the 27th Antenna Applications Symposium Monticello, Illinois, September 17-19, 2003 p107

    [11]

    Jia H Y, Gao J S, Feng X G, Sun L C 2008 Acta Opt. Sin. 28 1596 (in Chinese) [贾宏燕, 高劲松, 冯晓国, 孙连春 2008 光学学报 28 1596]

    [12]

    Arun K B 2005 Phased Array Antennas: Floquet Analysis, Synthesis, BFNs, and Active Array Systems (1st Ed.) (New York: Wiley)

    [13]

    Reed A J 1997 Ph. D. Dissertation (Texas: The University of Texas at Dallas)

    [14]

    Mittra R, Chan C H, Cwik T 1988 Proc. IEEE 76 1593

  • [1] 王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波. 基于人工表面等离激元的双通带频率选择结构设计. 物理学报, 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [2] 黄大庆, 康飞宇, 周卓辉, 刘翔, 程红飞. 微波低通高阻复合材料构件的设计与性能验证. 物理学报, 2015, 64(18): 188401. doi: 10.7498/aps.64.188401
    [3] 刘海文, 占昕, 任宝平. 射电天文用太赫兹三通带频率选择表面设计. 物理学报, 2015, 64(17): 174103. doi: 10.7498/aps.64.174103
    [4] 张建, 高劲松, 徐念喜, 于淼. 基于混合周期栅网结构的频率选择表面设计研究. 物理学报, 2015, 64(6): 067302. doi: 10.7498/aps.64.067302
    [5] 焦健, 高劲松, 徐念喜, 冯晓国, 胡海翔. 基于传递函数的频率选择表面集总参数研究. 物理学报, 2014, 63(13): 137301. doi: 10.7498/aps.63.137301
    [6] 王岩松, 高劲松, 徐念喜, 汤洋, 陈新. 具有陡降特性的新型混合单元频率选择表面. 物理学报, 2014, 63(7): 078402. doi: 10.7498/aps.63.078402
    [7] 袁子东, 高军, 曹祥玉, 杨欢欢, 杨群, 李文强, 商楷. 一种性能稳定的新型频率选择表面及其微带天线应用. 物理学报, 2014, 63(1): 014102. doi: 10.7498/aps.63.014102
    [8] 徐永顺, 别少伟, 江建军, 徐海兵, 万东, 周杰. 含螺旋单元频率选择表面的宽频带强吸收复合吸波体. 物理学报, 2014, 63(20): 205202. doi: 10.7498/aps.63.205202
    [9] 兰峰, 高喜, 亓丽梅. 基于频率选择表面的双层改进型互补结构太赫兹带通滤波器研究. 物理学报, 2014, 63(10): 104209. doi: 10.7498/aps.63.104209
    [10] 王秀芝, 高劲松, 徐念喜. 利用集总LC元件实现频率选择表面极化分离的特性 . 物理学报, 2013, 62(14): 147307. doi: 10.7498/aps.62.147307
    [11] 焦健, 徐念喜, 冯晓国, 梁凤超, 赵晶丽, 高劲松. 基于互补屏的主动频率选择表面设计研究. 物理学报, 2013, 62(16): 167306. doi: 10.7498/aps.62.167306
    [12] 张建, 高劲松, 徐念喜. 光学透明频率选择表面的设计研究 . 物理学报, 2013, 62(14): 147304. doi: 10.7498/aps.62.147304
    [13] 焦健, 高劲松, 徐念喜, 陈新. 基于互补屏的极化分离结构设计研究. 物理学报, 2013, 62(19): 197303. doi: 10.7498/aps.62.197303
    [14] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制. 物理学报, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [15] 王秀芝, 高劲松, 徐念喜. Ku/Ka波段双通带频率选择表面雷达罩设计研究. 物理学报, 2013, 62(23): 237302. doi: 10.7498/aps.62.237302
    [16] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [17] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [18] 高劲松, 王珊珊, 冯晓国, 徐念喜, 赵晶丽, 陈红. 二阶Y环频率选择表面的设计研究. 物理学报, 2010, 59(10): 7338-7343. doi: 10.7498/aps.59.7338
    [19] 李小秋, 冯晓国, 高劲松. 光学透明频率选择表面的研究. 物理学报, 2008, 57(5): 3193-3197. doi: 10.7498/aps.57.3193
    [20] 卢 俊, 陈新邑, 汪剑波. 圆环单元FSS对吸波材料特性的影响研究. 物理学报, 2008, 57(11): 7200-7203. doi: 10.7498/aps.57.7200
计量
  • 文章访问数:  3998
  • PDF下载量:  644
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-10
  • 修回日期:  2013-05-17
  • 刊出日期:  2013-08-05

Ku/Ka波段双通带频率选择表面设计研究

  • 1. 中国科学院长春光学精密机械与物理研究所, 中国科学院光学系统先进制造技术重点实验室, 长春 130033;
  • 2. 中国科学院大学, 北京 100049
    基金项目: 长春光机所创新三期工程项目 (批准号: 093Y32J090) 资助的课题.

摘要: 为了实现双通带频率选择表面(FSS)在较厚介质基底、 较大频带间隔和入射角度下的工程应用, 设计制备了一种性能优良的Ku/Ka波段双频FSS结构. 利用FSS栅瓣图分析了FSS具有稳定滤波特性的条件. 应用矢量模式匹配法计算了基于分形技术和复合图形技术的FSS的传输特性. 根据单元谐振模式和FSS传输特性归纳了厚介质基底、较远双通带FSS的设计原则, 最终优化出一种由方环复合Y环单元组成的FSS结构. 结果表明: 该结构在6.7 mm厚介质基底上0-45扫描范围内, 在Ku/Ka波段具有稳定的双频传输特性, 透过率均优于75%. 这为设计基底厚度较大、频带间隔较远、入射角度要求较高的双带FSS结构提供了理论参考与实验依据.

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回