搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于传递函数的频率选择表面集总参数研究

焦健 高劲松 徐念喜 冯晓国 胡海翔

引用本文:
Citation:

基于传递函数的频率选择表面集总参数研究

焦健, 高劲松, 徐念喜, 冯晓国, 胡海翔

Study on the lumped parameters of FSS in terms of the transfer function

Jiao Jian, Gao Jin-Song, Xu Nian-Xi, Feng Xiao-Guo, Hu Hai-Xiang
PDF
导出引用
  • 等效电路法是分析主动FSS的主要方法,获得FSS集总参数是等效电路法分析问题的关键. 本文在传统等效电路法基础上,根据传输线理论构造传递函数. 依据等效阻抗与传输峰值之间的关系,建立由集总参数构成的矩阵方程,利用最小二乘法拟合得到等效集总参数,并借助传递函数快速得到FSS频响特性曲线. 与全波分析法对比,传递函数法的计算结果与数值计算结果吻合,从而验证该方法的准确性和可靠性. 该方法不仅能够获取FSS结构集总参数,还能够计算FSS结构的频响特性曲线,为基于等效电路法分析主动FSS提供理论参考.
    Equivalent circuit method is a principal one to analyze the active frequency selective surface (FSS). Extracting its lumped parameters is the key to the equivalent circuit method. We have constructed the transfer function based on the traditional equivalent circuit method and the transmission line theory. A matrix equation composed of lumped parameters is set up utilizing the relationship between the equivalent impedance and transmission peak. The equivalent lumped parameters are solved by the least square method, and the FSS frequency response curves are obtained from the transfer function. Compared with the full wave analysis method, the calculated results are in good agreement with that of simulation. Such results verify the accuracy and reliability of the method presented in this paper, and provide a theoretical reference to active FSS analysis using the equivalent circuit method.
    • 基金项目: 长春光机所创新三期工程项目(批准号:093Y32J090)资助的课题.
    • Funds: Project supported by CIOMP the third innovation (Grant No. 093Y32J090).
    [1]

    Tang G M, Miao J G, Dong J M 2012 Chin. Phys. B 21 128401

    [2]

    Wang X Z, Gao J S, Xu N X, Liu H 2014 Chin. Phys. B 23 047303

    [3]

    Moallem M, Sarabandi K 2012 IEEE Trans. Terahertz Science Tech. 2 333

    [4]

    Xu N X, Feng X G, Wang Y S, Chen X, Gao J S 2011 Acta Phys. Sin. 60 114102 (in Chinese)[徐念喜, 冯晓国, 王岩松, 陈新, 高劲松 2011 物理学报 60 114102]

    [5]

    Sanz-Izquierdo B, Parker E A, Batchelor J C 2011 IEEE Trans. Antennas Propag. 59 2728

    [6]

    Jia H Y, Feng X G, Sheng C X 2012 Chin. Phys. B 21 054102

    [7]

    Lin B Q, Qu S B, Tong C M, Zhou H, Zhang H Y, and L W 2013 Chin. Phys. B 22 094103

    [8]

    Munk B A 2000 Frequency Selective Surface:theory and design (1st Ed.) (New York: Wiley)

    [9]

    Divrpvla R, Vazquez J, Parini C, Moore D 2006 IEE Proc. Microwaves Antenn. Propag. 153 213

    [10]

    Shamonin M, Shamonina E, Kalinin V, Solymar L 2004 J. Appl. Phys. 95 3778

    [11]

    Aznar F, Gil M, Bonache J, Jelinek L, Baena J D, Marques R, Martin F 2008 J. Appl. Phys. 104 114501

    [12]

    Liu L G Wu W W Mo J J Fu Y Q Yuan N C 2013 Chin. Phys. B 22 047802

    [13]

    Hokmabadi M P, Wilbert D S, Kung P, Kim S M 2013 Opt. Express 21 16455

    [14]

    Lee C K, Langley R J 1985 Proc. Inst. Elect. Eng. & mdash, Microwaves, Opt. Antennas 132 395

    [15]

    Anderson 1975 Bell Syst. Tech. J. 54 1725

    [16]

    Jiao J, Xu N X, Feng X G, Liang F C, Zhao J L, Gao J S 2013 Acta Phys. Sin. 62 167306 (in Chinese) [焦健, 徐念喜, 冯晓国, 粱凤超, 赵晶丽, 高劲松 2013 物理学报 62 167306]

    [17]

    Jiao J, Gao J S, Xu N X, Chen X 2013 Acta Phys. Sin. 62 197303 (in Chinese)[焦健, 高劲松, 徐念喜, 陈新 2013 物理学报 62 197303]

    [18]

    Hu X D, Zhou X L, Wu L S, Zhou L, Yin W Y 2009 IEEE Antennas and Wireless Propag. Lett. 8 1374

    [19]

    Sanz-Izquierdo B, Paker E A, Robertson J B, Batchelor J C 2009 Electron. Lett. 45 1107

  • [1]

    Tang G M, Miao J G, Dong J M 2012 Chin. Phys. B 21 128401

    [2]

    Wang X Z, Gao J S, Xu N X, Liu H 2014 Chin. Phys. B 23 047303

    [3]

    Moallem M, Sarabandi K 2012 IEEE Trans. Terahertz Science Tech. 2 333

    [4]

    Xu N X, Feng X G, Wang Y S, Chen X, Gao J S 2011 Acta Phys. Sin. 60 114102 (in Chinese)[徐念喜, 冯晓国, 王岩松, 陈新, 高劲松 2011 物理学报 60 114102]

    [5]

    Sanz-Izquierdo B, Parker E A, Batchelor J C 2011 IEEE Trans. Antennas Propag. 59 2728

    [6]

    Jia H Y, Feng X G, Sheng C X 2012 Chin. Phys. B 21 054102

    [7]

    Lin B Q, Qu S B, Tong C M, Zhou H, Zhang H Y, and L W 2013 Chin. Phys. B 22 094103

    [8]

    Munk B A 2000 Frequency Selective Surface:theory and design (1st Ed.) (New York: Wiley)

    [9]

    Divrpvla R, Vazquez J, Parini C, Moore D 2006 IEE Proc. Microwaves Antenn. Propag. 153 213

    [10]

    Shamonin M, Shamonina E, Kalinin V, Solymar L 2004 J. Appl. Phys. 95 3778

    [11]

    Aznar F, Gil M, Bonache J, Jelinek L, Baena J D, Marques R, Martin F 2008 J. Appl. Phys. 104 114501

    [12]

    Liu L G Wu W W Mo J J Fu Y Q Yuan N C 2013 Chin. Phys. B 22 047802

    [13]

    Hokmabadi M P, Wilbert D S, Kung P, Kim S M 2013 Opt. Express 21 16455

    [14]

    Lee C K, Langley R J 1985 Proc. Inst. Elect. Eng. & mdash, Microwaves, Opt. Antennas 132 395

    [15]

    Anderson 1975 Bell Syst. Tech. J. 54 1725

    [16]

    Jiao J, Xu N X, Feng X G, Liang F C, Zhao J L, Gao J S 2013 Acta Phys. Sin. 62 167306 (in Chinese) [焦健, 徐念喜, 冯晓国, 粱凤超, 赵晶丽, 高劲松 2013 物理学报 62 167306]

    [17]

    Jiao J, Gao J S, Xu N X, Chen X 2013 Acta Phys. Sin. 62 197303 (in Chinese)[焦健, 高劲松, 徐念喜, 陈新 2013 物理学报 62 197303]

    [18]

    Hu X D, Zhou X L, Wu L S, Zhou L, Yin W Y 2009 IEEE Antennas and Wireless Propag. Lett. 8 1374

    [19]

    Sanz-Izquierdo B, Paker E A, Robertson J B, Batchelor J C 2009 Electron. Lett. 45 1107

计量
  • 文章访问数:  1761
  • PDF下载量:  473
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-18
  • 修回日期:  2014-03-21
  • 刊出日期:  2014-07-05

基于传递函数的频率选择表面集总参数研究

  • 1. 中国科学院长春光学精密机械与物理研究所, 中国科学院光学系统先进制造技术重点实验室, 长春 130033;
  • 2. 中国科学院大学, 北京 100049
    基金项目: 

    长春光机所创新三期工程项目(批准号:093Y32J090)资助的课题.

摘要: 等效电路法是分析主动FSS的主要方法,获得FSS集总参数是等效电路法分析问题的关键. 本文在传统等效电路法基础上,根据传输线理论构造传递函数. 依据等效阻抗与传输峰值之间的关系,建立由集总参数构成的矩阵方程,利用最小二乘法拟合得到等效集总参数,并借助传递函数快速得到FSS频响特性曲线. 与全波分析法对比,传递函数法的计算结果与数值计算结果吻合,从而验证该方法的准确性和可靠性. 该方法不仅能够获取FSS结构集总参数,还能够计算FSS结构的频响特性曲线,为基于等效电路法分析主动FSS提供理论参考.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回