搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

B2+和B+离子的静态偶极极化率和超极化率的理论研究

陈池婷 吴磊 王霞 王婷 刘延君 蒋军 董晨钟

引用本文:
Citation:

B2+和B+离子的静态偶极极化率和超极化率的理论研究

陈池婷, 吴磊, 王霞, 王婷, 刘延君, 蒋军, 董晨钟

Theoretical study of static dipole polarizabilities and hyperpolarizability of B2+ and B+ ions

Chen Chi-Ting, Wu Lei, Wang Xia, Wang Ting, Liu Yan-Jun, Jiang Jun, Dong Chen-Zhong
PDF
HTML
导出引用
  • 利用相对论组态相互作用模型势方法计算了B2+和B+离子的波函数、能级和振子强度, 进一步得到B2+离子2s1/2, 2p1/2, 2p3/2, 3s1/2态的电偶极极化率和基态2s1/2的超极化率, 以及B+离子2s2 1S0与2s2p 3P0态的电偶极极化率. B2+离子2p1/2和2p3/2的偶极极化率为负值, 基态2s1/2的超极化率的贡献主要来自于与极化率相关的$ {{\rm{\alpha }}}^{1}{{\rm{\beta }}}_{0} $项. 对于B+离子, 钟跃迁2s2p 3P0 → 2s2 1S0在室温下的黑体辐射频移是0.01605 Hz, 该黑体辐射频移比碱土金属原子的钟跃迁黑体辐射频移小1—2个数量级.
    The wave functions, energy levels, and oscillator strengths of B2+ ions and B+ ions are calculated by using a relativistic potential model, which is named the relativistic configuration interaction plus core polarization (RCICP) method.The presently calculated energy levels are in very good agreement with experimental energy levels tabulated in NIST Atomic Spectra Database, with difference no more than 0.05%.The presently calculated oscillator strengths agree very well with NIST and some available theoretical results. The difference is no more than 0.6%. By using these energy levels and oscillator strengths, the electric-dipole static polarizability of the 2s1/2, 2p1/2, 2p3/2, and 3s1/2 state and static hyperpolarizability of the ground state 2s1/2 for B2+ ion, as well as electric-dipole static polarizability of the 2s2 1S0 state and 2s2p 3P0 state for B+ ion are determined, respectively. The polarizability of the 2p1/2 state and 2p3/2 state of B2+ ion are negative. The main reason is that the absorption energy of the 2p1/2,3/2 → 2s1/2 resonance transition is negative. The contribution to the polarizability of the 2p1/2 state and 2p3/2 state are both negative. For the tensor polarizability of the 2p3/2 state, the main contribution from the 2p3/2 → 2s1/2 transition and 2p3/2 → 3d5/2 transition are 2.4963 a.u. and –0.2537 a.u., respectively, and the present RCICP result is 2.1683 a.u. The largest contribution to the hyperpolarizability of the ground state 2s1/2 originates from the term of $ {\alpha }^{1}{\beta }_{0} $. The electric-dipole static polarizability of the 2s2 1S0 state and 2s2p 3P0 state of B+ ion are 9.6220 a.u. and 7.7594 a.u., respectively. The presently calculated blackbody radiation (BBR) shift of the 2s2p 3P0 → 2s2 1S0 clock transition is 0.01605 Hz. This BBR shift is one or two orders of magnitude smaller than that for alkaline-earth-metal atom.
      通信作者: 蒋军, phyjiang@yeah.net
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1602500)、国家自然科学基金(批准号: 12174316)、西北师范大学青年教师科研能力提升计划(批准号: NWNU-LKQN2020-10)和甘肃省创新基础研究群体项目基金(批准号: 20JR5RA541)资助的课题.
      Corresponding author: Jiang Jun, phyjiang@yeah.net
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant No. 12174316), the Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University, China (Grant No. NWNU-LKQN2020-10), and the Funds for Innovative Fundamental Research Group Project of Gansu Province, China (Grant No. 20JR5RA541).
    [1]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [2]

    Yamanaka K, Ohmae N, Ushijima I, Takamoto M, Katori H 2015 Phys. Rev. Lett. 114 230801Google Scholar

    [3]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802Google Scholar

    [4]

    Dubé P, Madej A A, Zhou Z, Bernard J E 2013 Phys. Rev. A 87 023806Google Scholar

    [5]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 6151Google Scholar

    [6]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 7897

    [7]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 7734

    [8]

    Bregolin F, Milani G, Pizzocaro M, Rauf B, Thoumany P, Levi F, Calonico D 2017 J. Phys. Conf. Ser. 841 012015Google Scholar

    [9]

    Pihan-Le Bars H, Guerlin C, Lasseri R D, Ebran J P, Bailey Q G, Bize S, Khan E, Wolf P 2017 Phys. Rev. D 95 075026Google Scholar

    [10]

    Shaniv R, Ozeri R, Safronova M S, Porsev S G, Dzuba V A, Flambaum V V, Häffner H 2018 Phys. Rev. Lett. 120 103202Google Scholar

    [11]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [12]

    Safronova M S, Porsev S G, Sanner C, Ye J 2018 Phys. Rev. Lett. 120 173001Google Scholar

    [13]

    Arvanitaki A, Huang J, Tilburg K V 2015 Phys. Rev. D 91 015015Google Scholar

    [14]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar

    [15]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [16]

    Kassimi N E, Thakkar A J 1994 Phys. Rev. A 50 2948Google Scholar

    [17]

    Flury J 2016 J. Phys. Conf. Ser. 723 012051Google Scholar

    [18]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 5871Google Scholar

    [19]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar

    [20]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502Google Scholar

    [21]

    Leggett A J 2001 Rev. Mod. Phys. 73 307Google Scholar

    [22]

    Derevianko A, Porsev S G, Kotochigova S, Tiesinga E, Julienne P S 2003 Phys. Rev. Lett. 90 063002Google Scholar

    [23]

    Jones K M, Tiesinga E, Lett P D, Julienne P S 2006 Rev. Mod. Phys. 78 483Google Scholar

    [24]

    Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M, Millo J, Lemonde P 2011 Phys. Rev. Lett. 106 210801Google Scholar

    [25]

    Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L, Hoyt C W, Taichenachev A V, Yudin V I 2008 Phys. Rev. Lett. 100 103002Google Scholar

    [26]

    Brusch A, Le Targat R, Baillard X, Fouché M, Lemonde P 2006 Phys. Rev. Lett. 96 103003Google Scholar

    [27]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [28]

    Safronova M S, Safronova U I, Clark C W 2012 Phys. Rev. A 86 042505Google Scholar

    [29]

    Kumar R, Chattopadhyay S, Mani B K, Angom D 2020 Phys. Rev. A 101 012503Google Scholar

    [30]

    Johnson W R, Kolb D, Huang K-N 1983 At. Data Nucl. Data Tables 28 2Google Scholar

    [31]

    Grant I P, Quiney H M 2000 Phys. Rev. A 62 022508Google Scholar

    [32]

    Bromley M W J, Mitroy J 2001 Phys. Rev. A 65 012505Google Scholar

    [33]

    Kramida A E, Ryabtsev A N, Ekberg J O, Kink I, Mannervik S, Martinson I 2008 Phys. Scr. 78 025301Google Scholar

    [34]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2009 Phys. Rev. A 79 062712Google Scholar

    [35]

    Tang L Y, Zhang J Y, Yan Z C, Shi T Y, Babb J F, Mitroy J 2009 Phys. Rev. A 80 042511Google Scholar

    [36]

    Tang L Y, Yan Z C, Shi T Y, Mitroy J 2010 Phys. Rev. A 81 042521Google Scholar

    [37]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2014 Phys. Rev. A 90 012524Google Scholar

    [38]

    Hameed S, Herzenberg A, James M G 1968 J. Phys. B: At. Mol. Opt. Phys. 1 822Google Scholar

    [39]

    Hafner P, Schwarz W H E 1978 J. Phys. B: At. Mol. Opt. Phys. 11 2975Google Scholar

    [40]

    Mitroy J, Griffin D C, Norcross D W, Pindzola M S 1988 Phys. Rev. A 38 3339Google Scholar

    [41]

    Kramida A, Ralchenko Yu, Reader J NIST ASD Team. https://physics.nist.gov/asd [2019-9-10]

    [42]

    Johnson W R, Liu Z W, Sapirstein J 1996 At. Data Nucl. Data Tables 64 279Google Scholar

    [43]

    Yan Z C, Tambasco M, Drake G W F 1998 Phys. Rev. A 57 1652Google Scholar

    [44]

    Wang Z W, Chung K T 1994 J. Phys. B: At. Mol. Opt. Phys. 27 855Google Scholar

    [45]

    Cheng Y, Mitroy J 2012 Phys. Rev. A 86 052505Google Scholar

    [46]

    Pipin J, Woźnicki W 1983 Chem. Phys. Lett. 95 392Google Scholar

    [47]

    Earwood W P, Davis S R 2022 At. Data Nucl. Data Tables 144 101490Google Scholar

    [48]

    Safronova U I, Safronova M S 2013 Phys. Rev. A 87 032502Google Scholar

    [49]

    Roy H P, Bhattacharya A K 1976 Mol. Phys. 31 649Google Scholar

    [50]

    Drake G W F, Cohen M 1968 J. Chem. Phys. 48 1168Google Scholar

    [51]

    Ryabtsev A N, Kink I, Awaya Y, Ekberg J O, Mannervik S, Ölme A, Martinson I 2005 Phys. Scr. 71 489Google Scholar

    [52]

    Chen M K 1999 Phys. Scr. T80 485Google Scholar

    [53]

    Fischer C F, Tachiev G 2004 At. Data Nucl. Data Tables 87 1Google Scholar

    [54]

    Jönsson P, Fischer C F, Godefroid M R 1999 J. Phys. B: At. Mol. Opt. Phys. 32 1233Google Scholar

    [55]

    Safronova M S, Kozlov M G, Clark C W 2011 Phys. Rev. Lett. 107 143006Google Scholar

    [56]

    Archibong E F, Thakkar A J 1990 Chem. Phys. Lett. 173 579Google Scholar

    [57]

    Singh Y, Sahoo B K 2014 Phys. Rev. A 90 022511Google Scholar

    [58]

    Chen C, Gou B C 2018 Commun. Theor. Phys. 70 765Google Scholar

    [59]

    Arora B, Safronova M S, Clark C W 2007 Phys. Rev. A 76 064501Google Scholar

    [60]

    Jiang D, Arora B, Safronova M S, Clark C W 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154020Google Scholar

  • 表 1  B2+离子的截断参数$ {\rho }_{l, j} $(单位: a.u.)

    Table 1.  Cut-off parameters $ {\rho }_{l, j} $ of B2+ ions (in a.u.).

    Statej$ {\rho }_{l, j} $
    2s1/20.72951
    2p1/20.67398
    3/20.67164
    3d3/20.91441
    5/20.91355
    下载: 导出CSV

    表 2  B2+离子的基态和部分低激发态相对于原子实的能级, 实验值(Expt.) [33]是来自于NIST的数据(单位: a.u.), “Diff.”表示用RCICP方法计算的结果与NIST结果之差的百分比

    Table 2.  Energy levels of the ground state and some low-lying states of B2+ ions relative to atomic core. Experimental values (Expt.) [33] are from the NIST data (in a.u.). “Diff.” denotes the difference in percentage from calculated by RCICP method and NIST results.

    StatejRCICPExpt.[33]Diff./%
    2s1/2–1.3939235–1.39392350
    2p1/2–1.1735867–1.17358670
    3/2–1.1734313–1.17343130
    3s1/2–0.5728008–0.57286320.01
    3p1/2–0.5146980–0.51477300.01
    3/2–0.5146520–0.51472740.01
    3d3/2–0.5005686–0.50056860
    5/2–0.5005553–0.50055530
    4s1/2–0.3108609–0.31089050.01
    4p1/2–0.2874707–0.28750980.01
    3/2–0.2874514–0.28749200.01
    4d3/2–0.2815308–0.28153240
    5/2–0.2815252–0.28152680
    4f5/2–0.2812848–0.28127050.01
    7/2–0.2812820–0.28126760.01
    5s1/2–0.1948639–0.19487930.01
    5p1/2–0.1831864–0.18320670.01
    3/2–0.1831765–0.18319700.01
    5d3/2–0.1801535–0.18015520
    5/2–0.1801507–0.18015230
    5f5/2–0.1800204–0.18001380
    7/2–0.1800190–0.18001240
    下载: 导出CSV

    表 3  B2+离子基态和部分低激发态之间跃迁的振子强度, “Diff.”表示用RCICP方法计算的结果与NIST结果[41]之差的百分比

    Table 3.  Oscillator strengths of transitions between the ground state and some low-lying states of B2+ ions. “Diff.” represents the difference in percentage form calculated by RCICP method and NIST results.

    TransitionsRCICPRMBPT[42]HR[43]NIST[41]Diff./%
    2s1/2→2p1/20.1212510.1211010.1210760.120990.22
    2s1/2→2p3/20.2427230.2425010.2423990.242150.24
    2s1/2→3p1/20.0510840.051080.01
    2s1/2→3p3/20.1020610.102400.33
    2p1/2→3s1/20.0463080.0462880.046360.11
    2p1/2→3d3/20.6379370.638000.01
    2p1/2→4s1/20.0081930.0082330.49
    2p1/2→4d3/20.1225730.122800.19
    2p3/2→3s1/20.0463460.0463380.046360.03
    2p3/2→3d3/20.0638060.063810.01
    2p3/2→3d5/20.5742840.574300
    2p3/2→4s1/20.0081980.0082360.46
    2p3/2→4d3/20.0122560.012280.20
    2p3/2→4d5/20.1103230.110500.16
    3s1/2→3p1/20.2032930.203100.10
    3s1/2→3p3/20.4069420.40680.04
    3s1/2→4p1/20.0487450.048500.51
    3s1/2→4p3/20.0973570.097000.37
    下载: 导出CSV

    表 4  B2+离子基态与部分低激发态的静态电偶极标量极化率与张量极化率以及主要跃迁的贡献(单位: a.u.)

    Table 4.  Static electric-dipole scalar and tensor polarizability of the ground state and some low-lying state of B2+ ions and breakdowns of the contributions of individual transitions (in a.u.).

    2s1/22p1/22p3/2 3s1/2
    Contr.$ {\alpha }_{}^{{\rm{S}}} $FCPC [44]Contr.$ {\alpha }_{}^{{\rm{S}}} $Contr.$ {\alpha }_{}^{{\rm{S}}} $$ {\alpha }^{{\rm{T}}} $Contr.$ {\alpha }_{}^{{\rm{S}}} $
    2p1/22.49752.4953[44]2s1/2–2.49752s1/2–2.49632.49633p1/260.218
    2p3/24.99264.9872[44]3d3/21.40843d5/21.2684–0.25373p3/2120.35
    Remains0.34330.3453[44]Remains0.4959Remains0.6371–0.0743Remains2.3125
    Core[30]0.01950.0195[44]Core0.0195Core0.0195Core0.0195
    Total7.85297.8473[44]Total–0.5737Total–0.57132.1683Total182.90
    CICP[45]7.8460–0.56938182.94
    SCC[46]7.85
    FCG[47]7.8591
    下载: 导出CSV

    表 5  B2+离子基态的超极化率及其中间态对超极化率的贡献(单位: a.u.)

    Table 5.  Hyperpolarizability of the ground state of B2+ ion and the contributions to the hyperpolarizability (in a.u.).

    Contributions$ {\gamma }_{0}\left(2{\rm{s}}\right) $$ {\gamma }_{0}^{{\rm{C}}}\left(2{\rm{s}}\right) $
    $ \dfrac{1}{18}T({\rm{s}}, {{\rm{p}}}_{1/2}, {\rm{s}}, {{\rm{p}}}_{1/2}) $1.251(1)1.250
    $ -\dfrac{1}{18}T({\rm{s}}, {{\rm{p}}}_{1/2}, {\rm{s}}, {{\rm{p}}}_{3/2}) $2.501(1)2.500
    $ -\dfrac{1}{18}T({\rm{s}}, {{\rm{p}}}_{3/2}, {\rm{s}}, {{\rm{p}}}_{1/2}) $2.501(1)2.500
    $ \dfrac{1}{18}T({\rm{s}}, {{\rm{p}}}_{3/2}, {\rm{s}}, {{\rm{p}}}_{3/2}) $5.001(1)5.000
    $T({\rm{s} }, { {\rm{p} } }_{ {j}^{'} }, {\rm{s} }, { {\rm{p} } }_{ {j}^{''} })$11.255(5)11.250
    $\dfrac{1}{18}T({\rm{s} }, { {\rm{p} } }_{1/2}{, {\rm{d} } }_{3/2}, { {\rm{p} } }_{1/2})$9.588(8)9.580
    $\dfrac{1}{18\sqrt{10} }T({\rm{s} }, { {\rm{p} } }_{1/2}{, {\rm{d} } }_{3/2}, { {\rm{p} } }_{3/2})$1.917(2)1.915
    $\dfrac{1}{18\sqrt{10} }T({\rm{s} }, { {\rm{p} } }_{3/2}{, {\rm{d} } }_{3/2}, { {\rm{p} } }_{1/2})$1.917(2)1.915
    $\dfrac{1}{180}T({\rm{s} }, { {\rm{p} } }_{3/2}{, {\rm{d} } }_{3/2}, { {\rm{p} } }_{3/2})$0.383(1)0.382
    $\dfrac{1}{30}T({\rm{s} }, { {\rm{p} } }_{3/2}{, {\rm{d} } }_{5/2}, { {\rm{p} } }_{3/2})$20.692(16)20.676
    $T({\rm{s} }, { {\rm{p} } }_{ {j}^{'} }{, {\rm{d} } }_{j}, { {\rm{p} } }_{ {j}^{''} })$34.497(28)34.469
    $ {\alpha }^{1}{\beta }_{0} $134.364(586)133.778
    RCICP–1063.346(6.645)–1056.701
    UCHF[50]–1160
    CHF[49]–1120
    下载: 导出CSV

    表 6  B+基态和部分低激发态相对于原子实的能级值, 实验值(Expt.) [51]是来自于NIST的数据(单位: a.u.), “Diff.”表示用RCICP方法计算的结果与NIST结果之差的百分比

    Table 6.  Energy levels of the ground state and some low-lying states of B+ ions relative to atomic core. Experimental values (Expt.) are from the NIST data (in a.u.). “Diff.” denotes the difference in percentage from calculated by RCICP method and NIST results.

    StateRCICPExpt.[51]Diff./%
    2$ {{\rm{s}}}^{2}{{}_{}{}^{1}{\rm{S}}}_{0} $–2.318347–2.3183470
    2s2p$ {{}_{}{}^{3}{\rm{P}}}_{0} $–2.148235–2.1482330
    2s2p$ {{}_{}{}^{3}{\rm{P}}}_{1} $–2.148205–2.1482050
    2s2p$ {{}_{}{}^{3}{\rm{P}}}_{2} $–2.148178–2.1481320
    2s2p$ {{}_{}{}^{1}{\rm{P}}}_{1} $–1.9832–1.9839270.03
    2$ {{\rm{p}}}^{2}{{}_{}{}^{3}{\rm{P}}}_{0} $–1.867621–1.8676730
    2$ {{\rm{p}}}^{2}{{}_{}{}^{3}{\rm{P}}}_{1} $–1.867634–1.8676340
    2$ {{\rm{p}}}^{2}{{}_{}{}^{3}{\rm{P}}}_{2} $–1.867565–1.8675730
    2$ {{\rm{p}}}^{2}{{}_{}{}^{1}{\rm{D}}}_{2} $–1.852917–1.8519470.05
    2$ {{\rm{p}}}^{2}{{}_{}{}^{1}{\rm{S}}}_{0} $–1.736452–1.7366790.01
    2s3s $ {{}_{}{}^{3}{\rm{S}}}_{1} $–1.727042–1.7270530
    2s3s $ {{}_{}{}^{1}{\rm{S}}}_{0} $–1.690800–1.6912930.03
    2s3p $ {{}_{}{}^{3}{\rm{P}}}_{0} $–1.662206–1.6622800
    2s3p $ {{}_{}{}^{3}{\rm{P}}}_{1} $–1.662167–1.6622770.01
    2s3p $ {{}_{}{}^{3}{\rm{P}}}_{2} $–1.662006–1.6622610.02
    2s3p $ {{}_{}{}^{1}{\rm{P}}}_{1} $–1.661601–1.6617650.01
    2s3d $ {{}_{}{}^{3}{\rm{D}}}_{1} $–1.631934–1.6319360
    2s3d $ {{}_{}{}^{3}{\rm{D}}}_{2} $–1.631720–1.6319360.01
    2s3d $ {{}_{}{}^{1}{\rm{D}}}_{2} $–1.613116–1.6135450.03
    $ 2{\rm{s}}4{\rm{s}}{{}_{}{}^{3}{\rm{S}}}_{1} $–1.560411–1.5604230
    $ 2{\rm{s}}4{\rm{s}}{{}_{}{}^{1}{\rm{S}}}_{0} $–1.552914–1.5531770.02
    $ 2{\rm{s}}4{\rm{p}} $ $ {{}_{}{}^{1}{\rm{P}}}_{1} $–1.540973–1.5410750.01
    $ 2{\rm{s}}4{\rm{p}} $ $ {{}_{}{}^{3}{\rm{P}}}_{1} $–1.5366–1.53670.01
    $ 2{\rm{s}}4{\rm{p}} $ $ {{}_{}{}^{3}{\rm{P}}}_{2} $–1.536439–1.5367260.02
    $ 2{\rm{s}}4{\rm{p}} $ $ {{}_{}{}^{3}{\rm{P}}}_{0} $–1.536693–1.5367260
    $ 2{\rm{s}}4{\rm{d}} $ $ {{}_{}{}^{3}{\rm{D}}}_{2} $–1.524938–1.5252100.02
    $ 2{\rm{s}}4{\rm{d}} $ $ {{}_{}{}^{3}{\rm{D}}}_{1} $–1.525198–1.5252100
    下载: 导出CSV

    表 7  B+离子基态和部分低激发态之间电偶极跃迁的振子强度(单位: a.u.)

    Table 7.  Oscillator strengths of electric-dipole transitions between the ground state and some low-lying states of B+ ions (in a.u.).

    TransitionRCICPCICP[45]BCICP[52]MCHF-BP[53]MCHF[54]NIST.[41]
    2s2 1S0 2s2p 1P11.000920.999071.0021.0010.9976(22)0.9990
    2s2 1S0→2s3p 1P10.108290.109590.1080.10870.1093(3)0.1090
    2s2 1S0→2s4p 1P10.053310.05300.0514
    2s2 1S02s5p 1P10.022440.02300.0241
    2s2p 3P02p2 3P10.341130.342980.3650.34300.3427(2)0.3400
    2s2p 3P0 2s3s 3S10.064370.063770.063970.0640
    2s2p 3P02s3d 3D10.476570.476270.4730.47590.4750
    2s2p 3P02s4s 3S10.011700.0115
    2s2p 3P02s4d 3D10.124800.1250.1260
    下载: 导出CSV

    表 8  B+离子2s2 1S0 和2s2p 3P0的电偶极极化率

    Table 8.  Electric-dipole polarizability of 2s2 1S0 and 2s2p 3P0 states of B+ ions

    2s2 1S02s2p 3P0
    Contributions polarizability/a.u.Contributions polarizability/a.u.
    2s2 1S0→2s2p 1P18.91492s2p 3P0→2p2p 3P14.3326
    2s2 1S0→2s3p 1P10.25112s2p 3P0→2s3d 3D11.7878
    Remains0.4365Remains1.6195
    Core0.0195Core0.0195
    RCICP9.6220RCICP7.7594
    CI[55]9.5750CI[55]7.7790
    CI+MBPT[55]9.6130CI+MBPT[55]7.7690
    CI+all-orders[55]9.6240CI+all-order[55]7.7720
    CCD+ST [56]9.5660
    CICP[45]9.6441CICP[45]7.7798
    PRCC[29]9.4130
    CCSDpT[57]10.395(22)
    RRV[58]9.6210
    下载: 导出CSV
  • [1]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [2]

    Yamanaka K, Ohmae N, Ushijima I, Takamoto M, Katori H 2015 Phys. Rev. Lett. 114 230801Google Scholar

    [3]

    Chou C W, Hume D B, Koelemeij J C J, Wineland D J, Rosenband T 2010 Phys. Rev. Lett. 104 070802Google Scholar

    [4]

    Dubé P, Madej A A, Zhou Z, Bernard J E 2013 Phys. Rev. A 87 023806Google Scholar

    [5]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 6151Google Scholar

    [6]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 7897

    [7]

    McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 7734

    [8]

    Bregolin F, Milani G, Pizzocaro M, Rauf B, Thoumany P, Levi F, Calonico D 2017 J. Phys. Conf. Ser. 841 012015Google Scholar

    [9]

    Pihan-Le Bars H, Guerlin C, Lasseri R D, Ebran J P, Bailey Q G, Bize S, Khan E, Wolf P 2017 Phys. Rev. D 95 075026Google Scholar

    [10]

    Shaniv R, Ozeri R, Safronova M S, Porsev S G, Dzuba V A, Flambaum V V, Häffner H 2018 Phys. Rev. Lett. 120 103202Google Scholar

    [11]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [12]

    Safronova M S, Porsev S G, Sanner C, Ye J 2018 Phys. Rev. Lett. 120 173001Google Scholar

    [13]

    Arvanitaki A, Huang J, Tilburg K V 2015 Phys. Rev. D 91 015015Google Scholar

    [14]

    Roberts B M, Blewitt G, Dailey C, Murphy M, Pospelov M, Rollings A, Sherman J, Williams W, Derevianko A 2017 Nat. Commun. 8 1195Google Scholar

    [15]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [16]

    Kassimi N E, Thakkar A J 1994 Phys. Rev. A 50 2948Google Scholar

    [17]

    Flury J 2016 J. Phys. Conf. Ser. 723 012051Google Scholar

    [18]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 5871Google Scholar

    [19]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar

    [20]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502Google Scholar

    [21]

    Leggett A J 2001 Rev. Mod. Phys. 73 307Google Scholar

    [22]

    Derevianko A, Porsev S G, Kotochigova S, Tiesinga E, Julienne P S 2003 Phys. Rev. Lett. 90 063002Google Scholar

    [23]

    Jones K M, Tiesinga E, Lett P D, Julienne P S 2006 Rev. Mod. Phys. 78 483Google Scholar

    [24]

    Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M, Millo J, Lemonde P 2011 Phys. Rev. Lett. 106 210801Google Scholar

    [25]

    Barber Z W, Stalnaker J E, Lemke N D, Poli N, Oates C W, Fortier T M, Diddams S A, Hollberg L, Hoyt C W, Taichenachev A V, Yudin V I 2008 Phys. Rev. Lett. 100 103002Google Scholar

    [26]

    Brusch A, Le Targat R, Baillard X, Fouché M, Lemonde P 2006 Phys. Rev. Lett. 96 103003Google Scholar

    [27]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [28]

    Safronova M S, Safronova U I, Clark C W 2012 Phys. Rev. A 86 042505Google Scholar

    [29]

    Kumar R, Chattopadhyay S, Mani B K, Angom D 2020 Phys. Rev. A 101 012503Google Scholar

    [30]

    Johnson W R, Kolb D, Huang K-N 1983 At. Data Nucl. Data Tables 28 2Google Scholar

    [31]

    Grant I P, Quiney H M 2000 Phys. Rev. A 62 022508Google Scholar

    [32]

    Bromley M W J, Mitroy J 2001 Phys. Rev. A 65 012505Google Scholar

    [33]

    Kramida A E, Ryabtsev A N, Ekberg J O, Kink I, Mannervik S, Martinson I 2008 Phys. Scr. 78 025301Google Scholar

    [34]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2009 Phys. Rev. A 79 062712Google Scholar

    [35]

    Tang L Y, Zhang J Y, Yan Z C, Shi T Y, Babb J F, Mitroy J 2009 Phys. Rev. A 80 042511Google Scholar

    [36]

    Tang L Y, Yan Z C, Shi T Y, Mitroy J 2010 Phys. Rev. A 81 042521Google Scholar

    [37]

    Tang L Y, Yan Z C, Shi T Y, Babb J F 2014 Phys. Rev. A 90 012524Google Scholar

    [38]

    Hameed S, Herzenberg A, James M G 1968 J. Phys. B: At. Mol. Opt. Phys. 1 822Google Scholar

    [39]

    Hafner P, Schwarz W H E 1978 J. Phys. B: At. Mol. Opt. Phys. 11 2975Google Scholar

    [40]

    Mitroy J, Griffin D C, Norcross D W, Pindzola M S 1988 Phys. Rev. A 38 3339Google Scholar

    [41]

    Kramida A, Ralchenko Yu, Reader J NIST ASD Team. https://physics.nist.gov/asd [2019-9-10]

    [42]

    Johnson W R, Liu Z W, Sapirstein J 1996 At. Data Nucl. Data Tables 64 279Google Scholar

    [43]

    Yan Z C, Tambasco M, Drake G W F 1998 Phys. Rev. A 57 1652Google Scholar

    [44]

    Wang Z W, Chung K T 1994 J. Phys. B: At. Mol. Opt. Phys. 27 855Google Scholar

    [45]

    Cheng Y, Mitroy J 2012 Phys. Rev. A 86 052505Google Scholar

    [46]

    Pipin J, Woźnicki W 1983 Chem. Phys. Lett. 95 392Google Scholar

    [47]

    Earwood W P, Davis S R 2022 At. Data Nucl. Data Tables 144 101490Google Scholar

    [48]

    Safronova U I, Safronova M S 2013 Phys. Rev. A 87 032502Google Scholar

    [49]

    Roy H P, Bhattacharya A K 1976 Mol. Phys. 31 649Google Scholar

    [50]

    Drake G W F, Cohen M 1968 J. Chem. Phys. 48 1168Google Scholar

    [51]

    Ryabtsev A N, Kink I, Awaya Y, Ekberg J O, Mannervik S, Ölme A, Martinson I 2005 Phys. Scr. 71 489Google Scholar

    [52]

    Chen M K 1999 Phys. Scr. T80 485Google Scholar

    [53]

    Fischer C F, Tachiev G 2004 At. Data Nucl. Data Tables 87 1Google Scholar

    [54]

    Jönsson P, Fischer C F, Godefroid M R 1999 J. Phys. B: At. Mol. Opt. Phys. 32 1233Google Scholar

    [55]

    Safronova M S, Kozlov M G, Clark C W 2011 Phys. Rev. Lett. 107 143006Google Scholar

    [56]

    Archibong E F, Thakkar A J 1990 Chem. Phys. Lett. 173 579Google Scholar

    [57]

    Singh Y, Sahoo B K 2014 Phys. Rev. A 90 022511Google Scholar

    [58]

    Chen C, Gou B C 2018 Commun. Theor. Phys. 70 765Google Scholar

    [59]

    Arora B, Safronova M S, Clark C W 2007 Phys. Rev. A 76 064501Google Scholar

    [60]

    Jiang D, Arora B, Safronova M S, Clark C W 2009 J. Phys. B: At. Mol. Opt. Phys. 42 154020Google Scholar

  • [1] 王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军. Be+离子和Li原子极化率和超极化率的理论研究. 物理学报, 2021, 70(4): 043101. doi: 10.7498/aps.70.20201386
    [2] 史茂雷, 刘磊, 田芳慧, 王鹏飞, 李嘉俊, 马蕾. 无锂助熔剂B2O3对Li1.3Al0.3Ti1.7(PO4)3固体电解质离子电导率的影响. 物理学报, 2017, 66(20): 208201. doi: 10.7498/aps.66.208201
    [3] 陈泽章. 太赫兹波段液晶分子极化率的理论研究. 物理学报, 2016, 65(14): 143101. doi: 10.7498/aps.65.143101
    [4] 王杰敏, 冯恒强, 孙金锋, 施德恒, 李文涛, 朱遵略. SiN自由基X2+, A2和B2+ 电子态的光谱常数研究. 物理学报, 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [5] 朱菁, 吕昌贵, 洪旭升, 崔一平. 分子一阶超极化率溶剂效应的理论研究. 物理学报, 2010, 59(4): 2850-2854. doi: 10.7498/aps.59.2850
    [6] 王 磊, 胡慧芳, 韦建卫, 曾 晖, 于滢潆, 王志勇, 张丽娟. 有机分子二苯乙烯系列衍生物第一超极化率的理论研究. 物理学报, 2008, 57(5): 2987-2993. doi: 10.7498/aps.57.2987
    [7] 逯振平, 韩 奎, 李海鹏, 张文涛, 黄志敏, 沈晓鹏, 张兆慧, 白 磊. 4-N-甲基苯乙烯砒啶盐衍生物振动超极化率的理论研究. 物理学报, 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [8] 李海鹏, 韩 奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白 磊. 有机分子第一超极化率色散效应和双光子共振增强理论研究. 物理学报, 2006, 55(4): 1827-1831. doi: 10.7498/aps.55.1827
    [9] 唐昌建, 宫玉彬, 杨玉芷. 二维相对论运动等离子体的介电率张量. 物理学报, 2004, 53(4): 1145-1149. doi: 10.7498/aps.53.1145
    [10] 郑仰东, 李俊庆, 李淳飞. 耦合双振子模型手性分子的微观参量对和频过程的影响. 物理学报, 2002, 51(6): 1279-1285. doi: 10.7498/aps.51.1279
    [11] 李慧玲, 阮可青, 李世燕, 莫维勤, 樊荣, 罗习刚, 陈仙辉, 曹烈兆. MgB2和Mg0.93Li0.07B2的电阻率与霍尔效应研究. 物理学报, 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
    [12] 刘家璐, 张廷庆, 冯建华, 周冠山, 应明炯. B+注入HgCdTe快速热退火的研究. 物理学报, 1998, 47(1): 47-52. doi: 10.7498/aps.47.47
    [13] 王瑞平, 黄大金, 石勤伟, 许鹏, 陈琦, 顾根大, 蔡维理, 周贵恩, 阮耀钟. Bi2Sr2CaCu2O8单晶a-b平面热电势率的各向异性. 物理学报, 1992, 41(7): 1147-1150. doi: 10.7498/aps.41.1147
    [14] 卢武星, 钱亚宏, 田人和, 王忠烈. MeV高能B+离子注入Si中二次缺陷的抑制与消除. 物理学报, 1990, 39(2): 254-260. doi: 10.7498/aps.39.254
    [15] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 物理学报, 1989, 38(10): 1717-1722. doi: 10.7498/aps.38.1717
    [16] 崔万秋, 张健, 袁萍, 王国梅, 恽怀顺. LiF-LiCl-B2O3系统非晶态快离子导体结构的研究. 物理学报, 1986, 35(4): 497-504. doi: 10.7498/aps.35.497
    [17] 杨原, 杨碚芳, 俞文海. 非晶态B2O3-0.7Li2O-0.7LiCl电导率频谱的研究. 物理学报, 1984, 33(7): 943-951. doi: 10.7498/aps.33.943
    [18] 陈立泉, 王连忠, 车广灿, 王刚. 非晶态离子导体Li2B2O4晶化前期的离子导电性. 物理学报, 1983, 32(9): 1177-1182. doi: 10.7498/aps.32.1177
    [19] 王刚, 李子荣, 陈立泉, 王连忠. 非晶态离子导体Li2B2O4的核磁共振研究. 物理学报, 1983, 32(8): 1104-1108. doi: 10.7498/aps.32.1104
    [20] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅳ)——钙钛矿、钨青铜型、LiNbO3型晶体线性极化率计算. 物理学报, 1978, 27(1): 41-46. doi: 10.7498/aps.27.41
计量
  • 文章访问数:  3617
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-17
  • 修回日期:  2023-04-27
  • 上网日期:  2023-05-25
  • 刊出日期:  2023-07-20

/

返回文章
返回