搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga+ 离子4s2 1S0-4s4p 3P0跃迁动态极化率的理论计算

娄宗帅 王跃飞 康博溢 李睿 张文君 魏远飞 布明鹭 蔡翊宇

引用本文:
Citation:

Ga+ 离子4s2 1S0-4s4p 3P0跃迁动态极化率的理论计算

娄宗帅, 王跃飞, 康博溢, 李睿, 张文君, 魏远飞, 布明鹭, 蔡翊宇

Theoretical calculation of dynamic polarizability of 4s2 1S0-4s4p 3P0 transition for Ga+ ion

LOU Zongshuai, WANG Yuefei, KANG Boyi, LI Rui, ZHANG Wenjun, WEI Yuanfei, BU Minglu, CAI Yiyu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用相对论的组态相互作用加多体微扰理论方法, 对Ga+离子的4s2 1S0-4s4p 3P0跃迁的动态极化率进行了理论计算. 并计算出了4s2 1S0态和4s4p 3P0态的“幻零”波长以及跃迁4s2 1S0 - 4s4p 3P0的“魔幻”波长, 对这些“幻零”波长和“魔幻”波长的精密测量提供了理论指导, 对研究Ga+离子的原子结构和4s2 1S0, 4s4p 3P0两量子态静态极化率之差的精确确定, 以及Ga+离子的全光囚禁具有重要意义. 同时, 基于“极化率天平”方法, 讨论了静态极化率测量过程中的理论计算误差随波长的变化, 为进一步高精度确定4s2 1S0态4s4p 3P0态的静态极化率提供了理论指导.
    The transition of Ga+ ions from 4s2 1S0 to 4s4p 3P0 has advantages such as a high quality factor and a small motional frequency shift, making it suitable as a reference for precision measurement experiments like optical clocks. Calculating the dynamic polarizability of 4s2 1S0-4s4p 3P0 transition for Ga+ ion is of great significance for exploring the potential applications of the Ga+ ion in the field of quantum precision measurement and for testing atomic and molecular structure theories. In this paper, the dynamic polarizability of the Ga+ ion 4s2 1S0 - 4s4p 3P0 transition is theoretically calculated using the relativistic configuration interaction plus many-body perturbation (CI+MBPT) method. The “tune-out” wavelengths for the 4s2 1S0 state and the 4s4p 3P0 state, as well as the “magic” wavelength of the 4s2 1S0 - 4s4p 3P0 transition, are also computed. It is observed that the resonant lines situated near a certain “turn-out” and “magic” wavelength can make dominant contributions to the polarizability, while the remaining resonant lines generally contribute the least. These “tune-out” and “magic” wavelengths provide theoretical guidance for precise measurements, which is important for studying the atomic structure of Ga+ ions. The accurate determination of the difference in static polarizability between the 4s2 1S0 and 4s4p 3P0 states is of significant importance. Additionally, based on the “polarizability scaling” method, this work also discusses how the theoretical calculation errors in static polarizability measurements vary with wavelength, which provides theoretical guidance for further determining the static polarizability of the 4s2 1S0 and 4s4p 3P0 states with high precision. This is crucial for minimizing the uncertainty of the blackbody radiation (BBR) frequency shift in Ga+ optical clock and suppressing the systematic uncertainty.
  • 图 1  Ga+离子的4s2 1S0态和4s4p 3P0态的动态极化率曲线

    Fig. 1.  Dynamic polarizabilities α(ω) of the 4s2 1S0 and 4s4p 3P0 states in Ga+ ion.

    图 2  Ga+离子的4s2 1S0态和4s4p 3P0态静态极化率之差的理论计算误差随波长变化曲线

    Fig. 2.  Theoretical calculation error of the difference in static polarizability between the 4s2 1S0 state and the 4s4p 3P0 state of Ga+ ion as a function of wavelength.

    表 1  Ga+离子的最低的23个能级的能量值 (cm–1), 第1行数值为基态的绝对能量值, 其他行数值为激发态相对于基态的激发能

    Table 1.  Energies of 23 lowest energy levels of Ga+ ion (cm–1), the value in the first row represents the absolute energy of the ground state, while the values in the other rows represent the excitation energies of the excited states relative to the ground state.

    State RCI RCI+MBPT NIST Diff./% Refs.
    4s2 1S0 396252.81 412181.94 413285.38 –0.27 413285.41CICP[5]
    4s4p 3P0 43174.90 47338.76 47367.55 –0.060 47367.57 CICP [5]
    47032 MCDHF [35]
    47368Expt[36]
    4s4p 3P1 43584.84 47792.83 47814.114 –0.044 47469 MCDHF [35]
    47814 Expt[36]
    4s4p 1P1 68389.17 70709.25 70701.427 0.011 70701.42 CICP [5]
    70455 MCDHF[35]
    70701 Expt[36]
    4s5s 3S1 96653.91 102623.02 102944.595 –0.31 100749.90 CICP[5]
    102665 MCDHF [35]
    102945 Expt[36]
    4s4d 3D1 106905.35 113471.29 113815.885 –0.30 113815.87 CICP[5]
    113305 MCDHF[35]
    113816 Expt[36]
    4p2 3P1 109300.03 115272.94 115224.47 –0.042 115224.49 CICP [5]
    114590 MCDHF [35]
    115224 Expt[36]
    4s5p 3P1 111880.88 118110.59 118518.461 –0.34 118236 MCDHF[35]
    118518 Expt[36]
    4s5p 1P1 114324.78 120211.72 120550.431 –0.28 120715.81CICP[5]
    120322 MCDHF[35]
    120550 Expt [36]
    4s6s 1S0 126011.01 132559.65 133010.30 –0.34 130793.68 CICP[5]
    133517 MCDHF[35]
    133741 Expt[36]
    4s5d 3D1 129989.22 136706.55 137157.524 –0.33 137155.79 CICP [5]
    136759 MCDHF [35]
    137157 Expt[36]
    4s6p 3P1 132039.60 138646.98
    4s6p 1P1 132671.60 139209.74
    4s7s 1S0 138282.16 145005.12 145494.205 –0.34 145176 MCDHF[35]
    145494 Expt[36]
    4s6d 3D1 140241.35 147033.96 147520.34 –0.33
    4s8s 1S0 144640.75 151383.73 151923.93 –0.36
    4s7d 3D1 145733.76 152563.77 153064.92 –0.33
    4s7p 3P1 141291.01 148033.38
    4s7p 1P1 141504.08 148239.62
    4s8p 3P1 146349.69 153163.32
    4s8p 1P1 146429.38 153251.11
    4s9s 1S0 148859.67 154959.21
    4s8d 3D1 149030.92 155885.88 156386.7 –0.32
    下载: 导出CSV

    表 2  使用RCI+MBPT方法得到的Ga+离子 4s2 1S0态和4s4p 3P0态的电偶极约化跃迁矩阵元 (a.u.)

    Table 2.  Reduced matrix elements of E1 transition for the 4s2 1S0 and 4s4p 3P0 of Ga+, obtained by using the RCI+MBPT methods (a.u.).

    Method RCI RCI+MBPT Recommend Refs.
    Guage Length Velocity Length Velocity
    4s2 1S0-4s4p 3P10.0557520.0590650.0648320.0724000.065 (17)0.0744[33]
    0.0895 MCDHF [35]
    0.0802 RRPA [38]
    4s2 1S0-4s4p 1P13.09183.05072.84803.03612.84 (24)2.69 CICP[5]
    2.87[33]
    2.68 MCDHF [35]
    2.81 MP [37]
    2.79 RRPA [38]
    2.71 MCHF [39]
    2.78 (11) Expt [40]
    4s2 1S0-4s5p 3P10.0005950.0004550.005940.0004000.006 (6)
    4s2 1S0-4s5p 1P10.284580.273020.154260.239820.15 (13)0.138[33]
    4s2 1S0-4s6p 3P10.002290.002370.008150.002720.0082 (59)
    4s2 1S0-4s6p 1P10.07410.06840.08680.05940.087 (27)
    4s2 1S0-4s7p 1P10.02640.02290.01430.02050.014 (12)
    4s2 1S0-4s7p 3P10.002320.002490.008030.002980.008 (6)
    4s2 1S0-4s8p 1P10.009860.007530.01830.007680.02 (1)
    4s2 1S0-4s8p 3P10.002020.002330.007870.0031040.008 (6)
    4s4p 3P0-4s5s 3S10.933040.923590.920290.908270.920 (25)0.974 CICP[5]
    1.00 MCDHF [35]
    0.982 MP [37]
    4s4p 3P0-4s4d 3D12.12862.08712.01812.06702.02 (11)2.00 CICP[5]
    2.08[33]
    2.02 MCDHF [35]
    2.05 MP [37]
    4s4p 3P0-4p2 3P11.81331.78181.64701.76951.65 (17)1.64 CICP[5]
    1.64 MCDHF [35]
    1.72 MP [37]
    4s4p 3P0-4s6s 3S10.267610.263920.268900.263530.269 (5)0.214 CICP[5]
    0.205 MCDHF [35]
    0.217 MP [37]
    4s4p 3P0-4s5d 3D10.664490.645360.624430.655900.62 (4)0.461 CICP[5]
    0.442 MCDHF [35]
    0.479 MP [37]
    4s4p 3P0-4s7s 3S10.149790.147500.150840.147980.151 (3)
    4s4p 3P0-4s6d 3D10.365740.353580.339860.362720.340 (26)
    4s4p 3P0-4s8s 3S10.102060.100420.100650.0986130.1021 (34)
    4s4p 3P0-4s7d 3D10.244400.235670.225220.242810.225 (19)
    4s4p 3P0-4s9s 3S10.0888390.0873780.0785990.0783100.079 (11)
    4s4p 3P0-4s8d 3D10.181070.174330.166160.180600.181 (14)
    下载: 导出CSV

    表 3  相关跃迁对态4s2 1S0和态4s4p 3P0的静态极化率α($ 0 $)的贡献

    Table 3.  Contributions of individual transitions to the static polarizabilities α($ 0 $) for 4s2 1S0 and 4s4p 3P0.

    TransitionContributionsRefs.
    $ \alpha \left(0\right)( $4s2 1S0$ ) $
    4s2 1S0-4s4p 3P10.013 (7)
    4s2 1S0-4s4p 1P116.69 (2.82)16.601[5]
    4s2 1S0-4s5p 3P14.4 (4.4) E-5
    4s2 1S0-4s5p 1P10.027 (27)0.016[5]
    4s2 1S0-4s6p 3P17.1 (7.1) E-5
    4s2 1S0-4s6p 1P10.008 (5)
    4s2 1S0-4snp 3P1, n = 7—80.00012 (12)
    4s2 1S0-4snp 1P1, n = 7—90.0006 (4)
    Core1.24 (1)[5]1.24 (1)[5]
    Total17.98 (2.82)17.95 (34)[5]
    $ \alpha \left(0\right)( $4s4p 3P0$ ) $
    4s4p 3P0-4s5s 3S12.23 (12)2.257[5]
    4s4p 3P0-4s4d 3D18.98 (98)8.668 [5]
    4s4p 3P0-4p2 3P15.87 (1.21)5.945[5]
    4s4p 3P0-4s6s 3S10.124 (5)
    4s4p 3P0-4s5d 3D10.62 (8)
    4s4p 3P0-4sns 3S1, n = 7—90.057 (13)
    4s4p 3P0-4snd 3D1, n = 6—80.283 (29)
    Core1.24 (1) [5]1.24 (1)[5]
    Total19.41 (1.56)19.58 (38)[5]
    $ {{\Delta }}\alpha \left(0\right) $1.43 (3.2)1.63 (72) [5]
    下载: 导出CSV

    表 4  “幻零”波长和“魔幻”波长的不确定度评估表, 占主导贡献的部分在表中加重

    Table 4.  The uncertainty evaluation table for the ‘Tune-out’ wavelength and the ‘Magic’ wavelength, the dominant contribution is emphasized in the table.

    Transition‘Tune-out’wavelengths‘Magic’wavelengths
    209.101176.42148.61117.197113.09209.286168.1148.27116.38106.7
    4s2 1S0-4s4p 3P10.0250.085<0.1<0.001<0.001<0.1
    4s2 1S0-4s4p 1P10.00760.0492.70.0490.162.5
    4s2 1S0-4s5p 1P1<0.001<0.01<0.1<0.001<0.010.11
    4s2 1S0-4s6p 1P1<0.001<0.01<0.1<0.001<0.01<0.1
    4s4p 3P0-4s5s 3S10.17<0.0010.00170.0073<0.010.27<0.001<0.01<0.1
    4s4p 3P0-4s4d 3D10.190.0770.0340.00950.0261.60.0470.0360.68
    4s4p 3P0-4p2 3P10.220.150.0480.130.0301.70.160.0470.96
    4s4p 3P0-4s6s 3S1<0.01<0.001<0.0010.0065<0.01<0.1<0.001<0.01<0.1
    4s4p 3P0-4s5d 3D1<0.01<0.001<0.001<0.001<0.01<0.1<0.001<0.01<0.1
    Others<0.001<0.01<0.01<0.001<0.01<0.01<0.1<0.01<0.01<0.1
    Total0.0260.340.160.0590.160.113.60.170.172.8
    下载: 导出CSV

    表 5  “幻零”波长和“魔幻”波长处相关跃迁对两个光钟态4s2 1S0和3s3p 3P0的动力学极化率的贡献, 占绝对贡献的部分在表中加重

    Table 5.  Breakdown of the contributions of individual transitions to the dynamic polarizabilities at the “tune-out” wavelengths and “Magic” wavelengths for the 3s2 1S0 and 3s3p 3P0 clock states of Ga+, the dominant contribution is emphasized in the table.

    Transition‘Tune-out’wavelengths‘Magic’wavelengths
    209.101176.42148.61117.197113.09209.286168.1148.27116.38106.7
    4s2 1S0-4s4p 3P1–32.06–0.03–0.01–0.01–0.019.51–0.02–0.01–0.010.00
    4s2 1S0-4s4p 1P130.7746.73177.29–36.57–29.5830.7257.11184.64–34.99–22.00
    4s2 1S0-4s5p 1P10.030.030.040.050.060.030.040.040.060.06
    4s2 1S0-4s6p 1P10.010.010.010.010.010.010.010.010.010.01
    Others0.010.010.010.010.010.010.010.010.010.01
    Core1.241.241.241.241.241.241.241.241.241.24
    Total0.0047.99178.58–35.27–28.2741.5258.39185.93–33.68–20.68
    4s4p 3P0-4s5s 3S18.59–55.40–4.78–1.64–1.468.54–15.34–4.71–1.60–1.21
    4s4p 3P0-4s4d 3D118.6433.00–352.26–13.85–11.6618.6145.19–297.43–13.37–9.07
    4s4p 3P0-4p2 3P111.6619.42353.37–10.10–8.4111.6425.33484.39–9.73–6.46
    4s4p 3P0-4s6s 3S10.180.220.3216.76–1.870.180.240.33–18.78–0.62
    4s4p 3P0-4s5d 3D10.871.01.436.4620.770.871.121.447.43–6.93
    Others0.440.520.681.131.390.440.610.681.132.37
    Core1.241.241.241.241.241.241.241.241.241.24
    Total41.620.000.000.000.0041.5258.39185.93–33.68–20.68
    Diff.0.000.000.000.00.0
    下载: 导出CSV
  • [1]

    Safronova M S, Kozlov M G, Clark C W 2011 Phys. Rev. Lett. 107 143006Google Scholar

    [2]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [3]

    Cui K F, Chao S J, Sun C L, Wang S M, Zhang P, Wei Y F, Yuan J B, Cao J, Shu H L, Huang X R 2022 Eur. Phys. J. D 76 140Google Scholar

    [4]

    Keller J, Burgermeister T, Kalincev D, Didier A, Kulosa A P, Nordmann T, Kiethe J, Mehlstäubler T E 2019 Phys. Rev. A 99 013405Google Scholar

    [5]

    Cheng Y J, Mitroy J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 185004Google Scholar

    [6]

    Tayal S S 1991 Phys. Scr. 43 270Google Scholar

    [7]

    魏远飞, 唐志明, 李承斌, 黄学人 2024 物理学报 73 103103Google Scholar

    Wei Y F, Tang Z M, Li C B, Huang X R 2024 Acta Phys. Sin. 73 103103Google Scholar

    [8]

    Wei, Y F, Chao S J, Cui K F, Li C B, Yu S C, Zhang H, Shu H L, Cao J, Huang X R 2024 Phys. Rev. Lett. 133 033001Google Scholar

    [9]

    Ma Z Y, Deng K, Wang Z Y, Wei W Z, Hao P, Zhang H X, Pang L R, Wang B, Wu F F, Liu H L, Yuan W H, Chang J L, Zhang J X, Wu Q Y, Zhang J, Lu Z H 2024 Phys. Rev. Appl. 21 044017Google Scholar

    [10]

    Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001Google Scholar

    [11]

    Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001Google Scholar

    [12]

    Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502(R

    [13]

    Zhang P, Cao J, Yuan J B, Liu D X, Yuan Y, Wei Y F, Shu H L, Huang X R 2021 Metrologia 58 035001Google Scholar

    [14]

    Arora B, Nandy D K, Sahoo B K, 2012 Phys. Rev. A 85 012506Google Scholar

    [15]

    Wei Y F, Tang Z M, Li C B, Yang Y, Zou Y M, Cui K F, Huang X R 2022 Chin. Phys. B 31 083102Google Scholar

    [16]

    Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J, Gao K L 2015 Phys. Rev. Lett. 114 223001Google Scholar

    [17]

    Huang Y, Wang M, Chen Z, Li C B, Zhang H Q, Zhang B L, Tang L Y, Shi T Y, Guan H, Gao K L 2024 New J. Phys. 26 043021Google Scholar

    [18]

    Tang Y B, Qiao H X, Shi T Y, Mitroy J 2013 Phys. Rev. A 87 042517Google Scholar

    [19]

    Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. Lett. 109 243004Google Scholar

    [20]

    Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012 Phys. Rev. Lett. 109 243003Google Scholar

    [21]

    Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 Phys. Rev. A 92 040501(R

    [22]

    Mitroy J, Zhang J Y, Bromley M W J, Rollin K G 2009 Eur. Phys. J. D 53 15Google Scholar

    [23]

    Kallay M, Nataraj H S, Sahoo B K, Das B P, Visscher L 2011 Phys. Rev. A 83 030503Google Scholar

    [24]

    Yu Y M, Suo B B, Fan H 2013 Phys. Rev. A 88 052518Google Scholar

    [25]

    Dzuba V A, Flambaum V V, Kozlov M G 1996 Phys. Rev. A 54 3948Google Scholar

    [26]

    Kozlov M G, Porsev S G, Safronova M S, Tupitsyn I I 2015 Comput. Phys. Commun. 195 199Google Scholar

    [27]

    Tang Z M, Yu Y M, Jiang J, Dong C Z 2018 J. Phys. B: At. Mol. Opt. Phys. 51 125002Google Scholar

    [28]

    Cheng Y J, Jiang J, Mitroy J 2013 Phys. Rev. A 88 022511Google Scholar

    [29]

    Jiang J, Tang L Y, Mitroy J 2013 Phys. Rev. A 87 032518Google Scholar

    [30]

    Yu W W, Yu R M, Cheng Y J 2015 Chin. Phys. Lett. 32 123102Google Scholar

    [31]

    Wu L, Wang X, Wang T, Jiang J, Dong C Z 2023 New J. Phys. 25 043011Google Scholar

    [32]

    Tang Z M, Wei Y F, Sahoo B K, Li C B, Yang Y, Zou Y M, Huang X R 2024 Phys. Rev. A 110 043108Google Scholar

    [33]

    Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (ver. 5.12) [Online]. Available: https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD

    [34]

    Hao L H, Liu J J 2018 J. Appl. Spectrosc 85 730Google Scholar

    [35]

    Jonsson P, Andersson M, Sabel H, Brage T 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1813Google Scholar

    [36]

    Isberg B, Litzen U 1985 Phys. Scr. 31 533Google Scholar

    [37]

    Victor G A, Taylor W R 1983 At. Data Nucl. Data Tables 28 107Google Scholar

    [38]

    Chou H, Chi H, Huang K 1994 Phys. Rev. A 49 2394Google Scholar

    [39]

    Fischer C F, Hansen J E 1978 Phys. Rev. A 17 1956Google Scholar

    [40]

    Andersen T, Eriksen P, Poulsen O, Ramanujam P S 1979 Phys. Rev. A 20 2621Google Scholar

    [41]

    Fischer C F 2009 Phys. Scr. T134 014019Google Scholar

    [42]

    Ekman J, Godefroid M R, Hartman H 2014 Atoms 2 215Google Scholar

    [43]

    Yu W W, Yu R M, Cheng Y J, Zhou Y J 2016 Chin. Phys. B 25 023101Google Scholar

  • [1] 张永慧, 史庭云, 唐丽艳. B-样条基组方法在少电子原子结构精密计算中的应用. 物理学报, doi: 10.7498/aps.74.20241728
    [2] 白建东, 刘硕, 刘文元, 颉琦, 王军民. 极化角依赖的铯原子魔术波长光阱理论分析. 物理学报, doi: 10.7498/aps.72.20222268
    [3] 王婷, 蒋丽, 王霞, 董晨钟, 武中文, 蒋军. Be+离子和Li原子极化率和超极化率的理论研究. 物理学报, doi: 10.7498/aps.70.20201386
    [4] 汪辰超, 吴太权, 王新燕, 江影. Rh(111)表面NO分子对多层膜的原子结构. 物理学报, doi: 10.7498/aps.66.026301
    [5] 吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍. Cu(100)表面CO分子单层膜的原子结构. 物理学报, doi: 10.7498/aps.62.186301
    [6] 郭古青, 杨亮, 张国庆. Zr48Cu45Al7大块金属玻璃的原子结构研究. 物理学报, doi: 10.7498/aps.60.016103
    [7] 李向东. 基于等离子体环境涨落的原子结构计算模型. 物理学报, doi: 10.7498/aps.60.053201
    [8] 青波, 程诚, 高翔, 张小乐, 李家明. 全相对论多组态原子结构及物理量的精密计算——构建准完备基以及组态相互作用. 物理学报, doi: 10.7498/aps.59.4547
    [9] 何彪, 易有根, 江少恩, 唐永建, 郑志坚. 电子碰撞Ga, As, Pt, W和Au原子Lα X射线产生截面的理论计算. 物理学报, doi: 10.7498/aps.58.6879
    [10] 常志文, 王清林, 罗有华. 自旋多重度对钛三聚体原子结构的影响. 物理学报, doi: 10.7498/aps.55.4553
    [11] 赵新新, 陶向明, 陈文斌, 陈 鑫, 尚学府, 谭明秋. Cu(100)表面c(2×2)-N原子结构与吸附行为研究. 物理学报, doi: 10.7498/aps.55.6001
    [12] 赵学安, 何军辉. 微量子腔结边电荷极化结构中的线性和二阶非线性动态电导性质的研究. 物理学报, doi: 10.7498/aps.53.1201
    [13] 涂修文, 盖峥. Ge(112)-(4×1)-In表面重构的原子结构. 物理学报, doi: 10.7498/aps.50.2439
    [14] 陈 科, 赵二海, 孙 鑫, 付柔励. 高分子中激子和双激子的极化率(解析计算). 物理学报, doi: 10.7498/aps.49.1778
    [15] 孟续军, 宗晓萍, 白 云, 孙永盛, 张景琳. 混合物质原子结构的自洽场计算. 物理学报, doi: 10.7498/aps.49.2133
    [16] 高君芳, 程鸿兴, 肖 渊, 庞文宁, 龙桂鲁, 尚仁成. 电子与钠原子散射极化参数的计算. 物理学报, doi: 10.7498/aps.47.1606
    [17] 吴正云, 黄启圣. 聚焦Ga+离子束注入方法研制半导体量子线结构. 物理学报, doi: 10.7498/aps.45.486
    [18] 仝晓民, 李家明, 邹宇. 原子结构的相对论性多通道理论——原子能级及物理参数μ-a,U-(ja)的计算. 物理学报, doi: 10.7498/aps.44.50
    [19] 承焕生, 崔志祥, 徐洪杰, 要小未, 杨福家. Al(100)表面原子结构的高能离子散射研究. 物理学报, doi: 10.7498/aps.38.1981
    [20] 何兴虹, 李白文, 张承修. 碱原子高里德堡态的极化率. 物理学报, doi: 10.7498/aps.38.1717
计量
  • 文章访问数:  438
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-26
  • 修回日期:  2025-02-27
  • 上网日期:  2025-03-20

/

返回文章
返回