-
利用相对论的组态相互作用加多体微扰理论方法, 对Ga+离子的4s2 1S0-4s4p 3P0跃迁的动态极化率进行了理论计算. 并计算出了4s2 1S0态和4s4p 3P0态的“幻零”波长以及跃迁4s2 1S0 - 4s4p 3P0的“魔幻”波长, 对这些“幻零”波长和“魔幻”波长的精密测量提供了理论指导, 对研究Ga+离子的原子结构和4s2 1S0, 4s4p 3P0两量子态静态极化率之差的精确确定, 以及Ga+离子的全光囚禁具有重要意义. 同时, 基于“极化率天平”方法, 讨论了静态极化率测量过程中的理论计算误差随波长的变化, 为进一步高精度确定4s2 1S0态4s4p 3P0态的静态极化率提供了理论指导.The transition of Ga+ ions from 4s2 1S0 to 4s4p 3P0 has advantages such as a high quality factor and a small motional frequency shift, making it suitable as a reference for precision measurement experiments like optical clocks. Calculating the dynamic polarizability of 4s2 1S0-4s4p 3P0 transition for Ga+ ion is of great significance for exploring the potential applications of the Ga+ ion in the field of quantum precision measurement and for testing atomic and molecular structure theories. In this paper, the dynamic polarizability of the Ga+ ion 4s2 1S0 - 4s4p 3P0 transition is theoretically calculated using the relativistic configuration interaction plus many-body perturbation (CI+MBPT) method. The “tune-out” wavelengths for the 4s2 1S0 state and the 4s4p 3P0 state, as well as the “magic” wavelength of the 4s2 1S0 - 4s4p 3P0 transition, are also computed. It is observed that the resonant lines situated near a certain “turn-out” and “magic” wavelength can make dominant contributions to the polarizability, while the remaining resonant lines generally contribute the least. These “tune-out” and “magic” wavelengths provide theoretical guidance for precise measurements, which is important for studying the atomic structure of Ga+ ions. The accurate determination of the difference in static polarizability between the 4s2 1S0 and 4s4p 3P0 states is of significant importance. Additionally, based on the “polarizability scaling” method, this work also discusses how the theoretical calculation errors in static polarizability measurements vary with wavelength, which provides theoretical guidance for further determining the static polarizability of the 4s2 1S0 and 4s4p 3P0 states with high precision. This is crucial for minimizing the uncertainty of the blackbody radiation (BBR) frequency shift in Ga+ optical clock and suppressing the systematic uncertainty.
-
Keywords:
- dynamic polarizability /
- Ga+ /
- atomic structure calculation /
- RCI+MBPT
-
表 1 Ga+离子的最低的23个能级的能量值 (cm–1), 第1行数值为基态的绝对能量值, 其他行数值为激发态相对于基态的激发能
Table 1. Energies of 23 lowest energy levels of Ga+ ion (cm–1), the value in the first row represents the absolute energy of the ground state, while the values in the other rows represent the excitation energies of the excited states relative to the ground state.
State RCI RCI+MBPT NIST Diff./% Refs. 4s2 1S0 396252.81 412181.94 413285.38 –0.27 413285.41CICP[5] 4s4p 3P0 43174.90 47338.76 47367.55 –0.060 47367.57 CICP [5]
47032 MCDHF [35]
47368Expt[36]4s4p 3P1 43584.84 47792.83 47814.114 –0.044 47469 MCDHF [35]
47814 Expt[36]4s4p 1P1 68389.17 70709.25 70701.427 0.011 70701.42 CICP [5]
70455 MCDHF[35]
70701 Expt[36]4s5s 3S1 96653.91 102623.02 102944.595 –0.31 100749.90 CICP[5]
102665 MCDHF [35]
102945 Expt[36]4s4d 3D1 106905.35 113471.29 113815.885 –0.30 113815.87 CICP[5]
113305 MCDHF[35]
113816 Expt[36]4p2 3P1 109300.03 115272.94 115224.47 –0.042 115224.49 CICP [5]
114590 MCDHF [35]
115224 Expt[36]4s5p 3P1 111880.88 118110.59 118518.461 –0.34 118236 MCDHF[35]
118518 Expt[36]4s5p 1P1 114324.78 120211.72 120550.431 –0.28 120715.81CICP[5]
120322 MCDHF[35]
120550 Expt [36]4s6s 1S0 126011.01 132559.65 133010.30 –0.34 130793.68 CICP[5]
133517 MCDHF[35]
133741 Expt[36]4s5d 3D1 129989.22 136706.55 137157.524 –0.33 137155.79 CICP [5]
136759 MCDHF [35]
137157 Expt[36]4s6p 3P1 132039.60 138646.98 — — — 4s6p 1P1 132671.60 139209.74 — — — 4s7s 1S0 138282.16 145005.12 145494.205 –0.34 145176 MCDHF[35]
145494 Expt[36]4s6d 3D1 140241.35 147033.96 147520.34 –0.33 — 4s8s 1S0 144640.75 151383.73 151923.93 –0.36 — 4s7d 3D1 145733.76 152563.77 153064.92 –0.33 — 4s7p 3P1 141291.01 148033.38 — — — 4s7p 1P1 141504.08 148239.62 — — — 4s8p 3P1 146349.69 153163.32 — — — 4s8p 1P1 146429.38 153251.11 — — — 4s9s 1S0 148859.67 154959.21 — — — 4s8d 3D1 149030.92 155885.88 156386.7 –0.32 — 表 2 使用RCI+MBPT方法得到的Ga+离子 4s2 1S0态和4s4p 3P0态的电偶极约化跃迁矩阵元 (a.u.)
Table 2. Reduced matrix elements of E1 transition for the 4s2 1S0 and 4s4p 3P0 of Ga+, obtained by using the RCI+MBPT methods (a.u.).
Method RCI RCI+MBPT Recommend Refs. Guage Length Velocity Length Velocity 4s2 1S0-4s4p 3P1 0.055752 0.059065 0.064832 0.072400 0.065 (17) 0.0744[33]
0.0895 MCDHF [35]
0.0802 RRPA [38]4s2 1S0-4s4p 1P1 3.0918 3.0507 2.8480 3.0361 2.84 (24) 2.69 CICP[5]
2.87[33]
2.68 MCDHF [35]
2.81 MP [37]
2.79 RRPA [38]
2.71 MCHF [39]
2.78 (11) Expt [40]4s2 1S0-4s5p 3P1 0.000595 0.000455 0.00594 0.000400 0.006 (6) — 4s2 1S0-4s5p 1P1 0.28458 0.27302 0.15426 0.23982 0.15 (13) 0.138[33] 4s2 1S0-4s6p 3P1 0.00229 0.00237 0.00815 0.00272 0.0082 (59) — 4s2 1S0-4s6p 1P1 0.0741 0.0684 0.0868 0.0594 0.087 (27) — 4s2 1S0-4s7p 1P1 0.0264 0.0229 0.0143 0.0205 0.014 (12) — 4s2 1S0-4s7p 3P1 0.00232 0.00249 0.00803 0.00298 0.008 (6) — 4s2 1S0-4s8p 1P1 0.00986 0.00753 0.0183 0.00768 0.02 (1) — 4s2 1S0-4s8p 3P1 0.00202 0.00233 0.00787 0.003104 0.008 (6) — 4s4p 3P0-4s5s 3S1 0.93304 0.92359 0.92029 0.90827 0.920 (25) 0.974 CICP[5]
1.00 MCDHF [35]
0.982 MP [37]4s4p 3P0-4s4d 3D1 2.1286 2.0871 2.0181 2.0670 2.02 (11) 2.00 CICP[5]
2.08[33]
2.02 MCDHF [35]
2.05 MP [37]4s4p 3P0-4p2 3P1 1.8133 1.7818 1.6470 1.7695 1.65 (17) 1.64 CICP[5]
1.64 MCDHF [35]
1.72 MP [37]4s4p 3P0-4s6s 3S1 0.26761 0.26392 0.26890 0.26353 0.269 (5) 0.214 CICP[5]
0.205 MCDHF [35]
0.217 MP [37]4s4p 3P0-4s5d 3D1 0.66449 0.64536 0.62443 0.65590 0.62 (4) 0.461 CICP[5]
0.442 MCDHF [35]
0.479 MP [37]4s4p 3P0-4s7s 3S1 0.14979 0.14750 0.15084 0.14798 0.151 (3) — 4s4p 3P0-4s6d 3D1 0.36574 0.35358 0.33986 0.36272 0.340 (26) — 4s4p 3P0-4s8s 3S1 0.10206 0.10042 0.10065 0.098613 0.1021 (34) — 4s4p 3P0-4s7d 3D1 0.24440 0.23567 0.22522 0.24281 0.225 (19) — 4s4p 3P0-4s9s 3S1 0.088839 0.087378 0.078599 0.078310 0.079 (11) — 4s4p 3P0-4s8d 3D1 0.18107 0.17433 0.16616 0.18060 0.181 (14) — 表 3 相关跃迁对态4s2 1S0和态4s4p 3P0的静态极化率α($ 0 $)的贡献
Table 3. Contributions of individual transitions to the static polarizabilities α($ 0 $) for 4s2 1S0 and 4s4p 3P0.
Transition Contributions Refs. $ \alpha \left(0\right)( $4s2 1S0$ ) $ — — 4s2 1S0-4s4p 3P1 0.013 (7) — 4s2 1S0-4s4p 1P1 16.69 (2.82) 16.601[5] 4s2 1S0-4s5p 3P1 4.4 (4.4) E-5 — 4s2 1S0-4s5p 1P1 0.027 (27) 0.016[5] 4s2 1S0-4s6p 3P1 7.1 (7.1) E-5 — 4s2 1S0-4s6p 1P1 0.008 (5) — 4s2 1S0-4snp 3P1, n = 7—8 0.00012 (12) — 4s2 1S0-4snp 1P1, n = 7—9 0.0006 (4) — Core 1.24 (1)[5] 1.24 (1)[5] Total 17.98 (2.82) 17.95 (34)[5] $ \alpha \left(0\right)( $4s4p 3P0$ ) $ — — 4s4p 3P0-4s5s 3S1 2.23 (12) 2.257[5] 4s4p 3P0-4s4d 3D1 8.98 (98) 8.668 [5] 4s4p 3P0-4p2 3P1 5.87 (1.21) 5.945[5] 4s4p 3P0-4s6s 3S1 0.124 (5) — 4s4p 3P0-4s5d 3D1 0.62 (8) — 4s4p 3P0-4sns 3S1, n = 7—9 0.057 (13) — 4s4p 3P0-4snd 3D1, n = 6—8 0.283 (29) — Core 1.24 (1) [5] 1.24 (1)[5] Total 19.41 (1.56) 19.58 (38)[5] $ {{\Delta }}\alpha \left(0\right) $ 1.43 (3.2) 1.63 (72) [5] 表 4 “幻零”波长和“魔幻”波长的不确定度评估表, 占主导贡献的部分在表中加重
Table 4. The uncertainty evaluation table for the ‘Tune-out’ wavelength and the ‘Magic’ wavelength, the dominant contribution is emphasized in the table.
Transition ‘Tune-out’wavelengths ‘Magic’wavelengths 209.101 176.42 148.61 117.197 113.09 209.286 168.1 148.27 116.38 106.7 4s2 1S0-4s4p 3P1 0.025 0.085 <0.1 <0.001 <0.001 <0.1 4s2 1S0-4s4p 1P1 0.0076 0.049 2.7 0.049 0.16 2.5 4s2 1S0-4s5p 1P1 <0.001 <0.01 <0.1 <0.001 <0.01 0.11 4s2 1S0-4s6p 1P1 <0.001 <0.01 <0.1 <0.001 <0.01 <0.1 4s4p 3P0-4s5s 3S1 0.17 <0.001 0.0017 0.0073 <0.01 0.27 <0.001 <0.01 <0.1 4s4p 3P0-4s4d 3D1 0.19 0.077 0.034 0.0095 0.026 1.6 0.047 0.036 0.68 4s4p 3P0-4p2 3P1 0.22 0.15 0.048 0.13 0.030 1.7 0.16 0.047 0.96 4s4p 3P0-4s6s 3S1 <0.01 <0.001 <0.001 0.0065 <0.01 <0.1 <0.001 <0.01 <0.1 4s4p 3P0-4s5d 3D1 <0.01 <0.001 <0.001 <0.001 <0.01 <0.1 <0.001 <0.01 <0.1 Others <0.001 <0.01 <0.01 <0.001 <0.01 <0.01 <0.1 <0.01 <0.01 <0.1 Total 0.026 0.34 0.16 0.059 0.16 0.11 3.6 0.17 0.17 2.8 表 5 “幻零”波长和“魔幻”波长处相关跃迁对两个光钟态4s2 1S0和3s3p 3P0的动力学极化率的贡献, 占绝对贡献的部分在表中加重
Table 5. Breakdown of the contributions of individual transitions to the dynamic polarizabilities at the “tune-out” wavelengths and “Magic” wavelengths for the 3s2 1S0 and 3s3p 3P0 clock states of Ga+, the dominant contribution is emphasized in the table.
Transition ‘Tune-out’wavelengths ‘Magic’wavelengths 209.101 176.42 148.61 117.197 113.09 209.286 168.1 148.27 116.38 106.7 4s2 1S0-4s4p 3P1 –32.06 –0.03 –0.01 –0.01 –0.01 9.51 –0.02 –0.01 –0.01 0.00 4s2 1S0-4s4p 1P1 30.77 46.73 177.29 –36.57 –29.58 30.72 57.11 184.64 –34.99 –22.00 4s2 1S0-4s5p 1P1 0.03 0.03 0.04 0.05 0.06 0.03 0.04 0.04 0.06 0.06 4s2 1S0-4s6p 1P1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Others 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 Core 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 Total 0.00 47.99 178.58 –35.27 –28.27 41.52 58.39 185.93 –33.68 –20.68 4s4p 3P0-4s5s 3S1 8.59 –55.40 –4.78 –1.64 –1.46 8.54 –15.34 –4.71 –1.60 –1.21 4s4p 3P0-4s4d 3D1 18.64 33.00 –352.26 –13.85 –11.66 18.61 45.19 –297.43 –13.37 –9.07 4s4p 3P0-4p2 3P1 11.66 19.42 353.37 –10.10 –8.41 11.64 25.33 484.39 –9.73 –6.46 4s4p 3P0-4s6s 3S1 0.18 0.22 0.32 16.76 –1.87 0.18 0.24 0.33 –18.78 –0.62 4s4p 3P0-4s5d 3D1 0.87 1.0 1.43 6.46 20.77 0.87 1.12 1.44 7.43 –6.93 Others 0.44 0.52 0.68 1.13 1.39 0.44 0.61 0.68 1.13 2.37 Core 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 Total 41.62 0.00 0.00 0.00 0.00 41.52 58.39 185.93 –33.68 –20.68 Diff. 0.00 0.00 0.00 0.0 0.0 -
[1] Safronova M S, Kozlov M G, Clark C W 2011 Phys. Rev. Lett. 107 143006
Google Scholar
[2] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
Google Scholar
[3] Cui K F, Chao S J, Sun C L, Wang S M, Zhang P, Wei Y F, Yuan J B, Cao J, Shu H L, Huang X R 2022 Eur. Phys. J. D 76 140
Google Scholar
[4] Keller J, Burgermeister T, Kalincev D, Didier A, Kulosa A P, Nordmann T, Kiethe J, Mehlstäubler T E 2019 Phys. Rev. A 99 013405
Google Scholar
[5] Cheng Y J, Mitroy J 2013 J. Phys. B: At. Mol. Opt. Phys. 46 185004
Google Scholar
[6] Tayal S S 1991 Phys. Scr. 43 270
Google Scholar
[7] 魏远飞, 唐志明, 李承斌, 黄学人 2024 物理学报 73 103103
Google Scholar
Wei Y F, Tang Z M, Li C B, Huang X R 2024 Acta Phys. Sin. 73 103103
Google Scholar
[8] Wei, Y F, Chao S J, Cui K F, Li C B, Yu S C, Zhang H, Shu H L, Cao J, Huang X R 2024 Phys. Rev. Lett. 133 033001
Google Scholar
[9] Ma Z Y, Deng K, Wang Z Y, Wei W Z, Hao P, Zhang H X, Pang L R, Wang B, Wu F F, Liu H L, Yuan W H, Chang J L, Zhang J X, Wu Q Y, Zhang J, Lu Z H 2024 Phys. Rev. Appl. 21 044017
Google Scholar
[10] Huntemann N, Sanner C, Lipphardt B, Tamm C, Peik E 2016 Phys. Rev. Lett. 116 063001
Google Scholar
[11] Mitroy J, Safronova M S, Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001
Google Scholar
[12] Porsev S G, Derevianko A 2006 Phys. Rev. A 74 020502(R
[13] Zhang P, Cao J, Yuan J B, Liu D X, Yuan Y, Wei Y F, Shu H L, Huang X R 2021 Metrologia 58 035001
Google Scholar
[14] Arora B, Nandy D K, Sahoo B K, 2012 Phys. Rev. A 85 012506
Google Scholar
[15] Wei Y F, Tang Z M, Li C B, Yang Y, Zou Y M, Cui K F, Huang X R 2022 Chin. Phys. B 31 083102
Google Scholar
[16] Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J, Gao K L 2015 Phys. Rev. Lett. 114 223001
Google Scholar
[17] Huang Y, Wang M, Chen Z, Li C B, Zhang H Q, Zhang B L, Tang L Y, Shi T Y, Guan H, Gao K L 2024 New J. Phys. 26 043021
Google Scholar
[18] Tang Y B, Qiao H X, Shi T Y, Mitroy J 2013 Phys. Rev. A 87 042517
Google Scholar
[19] Holmgren W F, Trubko R, Hromada I, Cronin A D 2012 Phys. Rev. Lett. 109 243004
Google Scholar
[20] Herold C D, Vaidya V D, Li X, Rolston S L, Porto J V, Safronova M S 2012 Phys. Rev. Lett. 109 243003
Google Scholar
[21] Safronova M S, Zuhrianda Z, Safronova U I, Clark C W 2015 Phys. Rev. A 92 040501(R
[22] Mitroy J, Zhang J Y, Bromley M W J, Rollin K G 2009 Eur. Phys. J. D 53 15
Google Scholar
[23] Kallay M, Nataraj H S, Sahoo B K, Das B P, Visscher L 2011 Phys. Rev. A 83 030503
Google Scholar
[24] Yu Y M, Suo B B, Fan H 2013 Phys. Rev. A 88 052518
Google Scholar
[25] Dzuba V A, Flambaum V V, Kozlov M G 1996 Phys. Rev. A 54 3948
Google Scholar
[26] Kozlov M G, Porsev S G, Safronova M S, Tupitsyn I I 2015 Comput. Phys. Commun. 195 199
Google Scholar
[27] Tang Z M, Yu Y M, Jiang J, Dong C Z 2018 J. Phys. B: At. Mol. Opt. Phys. 51 125002
Google Scholar
[28] Cheng Y J, Jiang J, Mitroy J 2013 Phys. Rev. A 88 022511
Google Scholar
[29] Jiang J, Tang L Y, Mitroy J 2013 Phys. Rev. A 87 032518
Google Scholar
[30] Yu W W, Yu R M, Cheng Y J 2015 Chin. Phys. Lett. 32 123102
Google Scholar
[31] Wu L, Wang X, Wang T, Jiang J, Dong C Z 2023 New J. Phys. 25 043011
Google Scholar
[32] Tang Z M, Wei Y F, Sahoo B K, Li C B, Yang Y, Zou Y M, Huang X R 2024 Phys. Rev. A 110 043108
Google Scholar
[33] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team 2024 NIST Atomic Spectra Database (ver. 5.12) [Online]. Available: https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD
[34] Hao L H, Liu J J 2018 J. Appl. Spectrosc 85 730
Google Scholar
[35] Jonsson P, Andersson M, Sabel H, Brage T 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1813
Google Scholar
[36] Isberg B, Litzen U 1985 Phys. Scr. 31 533
Google Scholar
[37] Victor G A, Taylor W R 1983 At. Data Nucl. Data Tables 28 107
Google Scholar
[38] Chou H, Chi H, Huang K 1994 Phys. Rev. A 49 2394
Google Scholar
[39] Fischer C F, Hansen J E 1978 Phys. Rev. A 17 1956
Google Scholar
[40] Andersen T, Eriksen P, Poulsen O, Ramanujam P S 1979 Phys. Rev. A 20 2621
Google Scholar
[41] Fischer C F 2009 Phys. Scr. T134 014019
Google Scholar
[42] Ekman J, Godefroid M R, Hartman H 2014 Atoms 2 215
Google Scholar
[43] Yu W W, Yu R M, Cheng Y J, Zhou Y J 2016 Chin. Phys. B 25 023101
Google Scholar
计量
- 文章访问数: 438
- PDF下载量: 26
- 被引次数: 0