-
三维拉曼边带冷却后的铯原子样品装载于一个磁悬浮的大体积交叉光学偶极阱中, 继续加载一个小体积的光学偶极阱后, 实现了Dimple光学偶极阱对铯原子的高效装载. 对不同磁场下磁悬浮大体积光阱的有效装载势能进行理论分析与实验测量, 得出最优化的梯度磁场和均匀偏置磁场, 获得了基于磁悬浮大体积光阱的Dimple光学偶极阱的装载势能曲线, 实现了Dimple光学偶极阱对经拉曼边带冷却后俘获在磁悬浮的大体积光阱中的铯原子样品的有效装载. 比较了Dimple光学偶极阱分别从拉曼边带冷却、大体积的交叉光阱和消除反俘获势后的磁悬浮大体积光阱装载的结果, 将俘获在磁悬浮大体积光阱中的铯原子样品装载到Dimple光学偶极阱, 铯原子样品的密度提高了约15倍.
-
关键词:
- 磁悬浮 /
- 拉曼边带冷却 /
- Dimple光学偶极阱
Optical trapping techniques and the ability to tune the atomic interactions both have made the unprecedented progress in the quantum gas research field. The major advantage of the optical trap is that the atoms are likely to be trapped at various sub-levels of the electronic ground state and the interaction strength can be controlled by Feshbach resonance. Optical trapping methods in combination with magnetic tuning of the scattering properties directly lead to the experimental achievements of Bose-Einstein condensation (BEC) of Cesium, which at first failed by using magnetic trapping approaches due to the large inelastic collision rate. The rapid loss of cesium atoms due to the inelastic two-body collisions greatly suppresses the efficient evaporative cooling to obtain a condensate. For optical production of cesium atomic BEC, it is necessary to prepare a large number of Cs atoms at specified state in an optical trap for condensation, especially for an efficient forced evaporation cooling. In this paper, we demonstrate our research on enhancing the loading rate of the atoms by using a dimple trap combined with a large-volume optical dipole trap (reservoir trap). In our work, the cold cesium atoms are prepared by a three-dimensional degenerated Raman sideband cooling, and then loaded into a large-volume crossed dipole trap by using the magnetic levitation technique. Effective load of the dimple optical trap is realized by superposing the small-volume dimple trap on the center of the largevolume optical trap. The theoretical analyses are performed for the magnetically levitated large-volume crossed dipole trap in variable magnetic field gradients and uniform bias fields. Optimal experimental values are acquired accordingly. The combined potential curve of the dimple trap, which is superimposed on the magnetically levitated large-volume dipole trap, is also given. The loading of precooled atoms from Raman sideband cooling into the magnetically levitated large-volume optical trap is measured in variable magnetic field gradients and uniform bias fields. Different loading results of the dimple trap are investigated, including direct loading after Raman sideband cooling, the large-volume optical trap and the magnetically levitated large-volume dipole trap without anti-trapping potential. Comparatively, the atomic number density is enhanced by a factor of ~15 by loading the atomic sample from the magnetically levitated large-volume dipole trap into the dimple optical trap. The experimental results lay a sound basis for the further cooling and densifying the atomic cloud through the evaporating cooling stage. This method can be used to obtain more cold atoms or a large number of Bose-Einstein condensation atoms for atomic species with large atom mass.-
Keywords:
- magnetic levitation /
- Raman sideband cooling /
- Dimple optical trap
[1] Zahzam N, Vogt T, Mudrich M, Comparat D, Pillet P 2006 Phys. Rev. Lett. 96 023202
[2] Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G M 2014 Nature 510 518
[3] Anderlini M, Lee P J, Brown B L, Sebby-Strabley J, Phillips W D, Porto J V 2007 Nature 448 452
[4] Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307
[5] Grimm R, Weidemller M, Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95
[6] Saba M, Pasquini T A, Sanner C, Shin Y, Ketterle W, Pritchard D E 2005 Science 307 1945
[7] Gatan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nature Phys. 5 115
[8] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nature Phys. 5 110
[9] Sebby-Strabley J, Newell R T R, Day J O, Brekke E, Walker T G 2005 Phys. Rev. A 71 021401
[10] Goban A, Choi K S, Alton D J, Ding D, Lacrote C, Pototschnig M, Thiele T, Stern N P, Kimble H J 2012 Phys. Rev. Lett. 109 033603
[11] Hackermller L, Schneider U, Moreno-Cardoner M, Kitagawa T, Best T, Will S, Demler E, Altman E, Bloch I, Paredes B 2010 Science 327 1621
[12] Younge K C, Knuffman B, Anderson S E, Raithel G 2010 Phys. Rev. Lett. 104 173001
[13] Barrett M D, Sauer J A, Chapman M S 2001 Phys. Rev. Lett. 87 010404
[14] Truscott A G, Strecker K E, McAlexander W I, Partridge G B, Hulet R G 2001 Science 291 2570
[15] Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J, Salomon C 2001 Phys. Rev. Lett. 87 080403
[16] Granade S R, Gehm M E, O'Hara K M, Thomas J E 2002 Phys. Rev. Lett. 88 120405
[17] Marchant A L, Hndel S, Hopkins S A, Wiles T P, Cornish S L 2012 Phys. Rev. A 85 053647
[18] Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle M 1998 Nature 396 345
[19] Khler T, Gral K, Julienne P S 2006 Rev. Mod. Phys. 78 1311
[20] Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[21] Weber T, Herbig J, Mark M, Ngerl H C, Grimm R 2003 Science 299 232
[22] Kraemer T, Herbig J, Mark M, Weber T, Chin C, Ngerl H C, Grimm R 2004 Appl. Phys. B 79 1013
[23] Pinkse P W H, Mosk A, Weidemller M, Reynolds M W, Hijmans T W, Walraven J K M 1997 Phys. Rev. Lett. 78 990
[24] Stamper-Kurn D M, Miesner H J, Chikkatur A P, Inouye S, Stenger J, Ketterle W 1998 Phys. Rev. Lett. 81 2194
[25] Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A, Wieman C E 2001 Nature 412 295
[26] Khl M, Davis M J, Gardiner C W, Hnsch T W, Esslinger T 2002 Phys. Rev. Lett. 88 080402
[27] Erhard M, Schmaljohann H, Kronjger J, Bongs K, Sengstock K 2004 Phys. Rev. A 70 031602
[28] Comparat D, Fioretti A, Stern G, Dimova E, Tolra B L, Pillet P 2006 Phys. Rev. A 73 043410
[29] Ritter S, ttl A, Donner T, Bourdel T, Khl M, Esslinger T 2007 Phys. Rev. Lett. 98 090402
[30] Jacob D, Mimoun E, Sarlo L D, Weitz M, Dalibard J, Gerbier F 2011 New J. Phys. 13 065022
[31] Treutlein P, Chung K Y, Chu S 2001 Phys. Rev. A 63 051401
[32] Li Y, Wu J, Feng G, Nute J, Piano S, Hackermller L, Ma J, Xiao L, Jia S 2015 Laser Phys. Lett. 12 055501
[33] Hung C L, Zhang X B, Gemelke N, Chin C 2008 Phys. Rev. A 78 011604
[34] Li Y Q, Feng G S, Xu R D, Wang X F, Wu J Z, Chen G, Dai X C, Ma J, Xiao L T, Jia S T 2015 Phys. Rev. A 91 053604
[35] Zhang Y C, Wu J Z, Li Y Q, Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2011 Chin. Phys. B 20 123701
[36] Li Y Q, Ma J, Wu J Z, Zhang Y C, Zhao Y T, Wang L R, Xiao L T, Jia S T 2012 Chin. Phys. B 21 043404
[37] Wang Y H, Yang H J, Zhang T C, Wang J M 2006 Acta Phys. Sin. 55 3403 (in Chinese) [王彦华, 杨海菁, 张天才, 王军民 2006 物理学报 55 3403]
[38] Ma J, Wang X F, Xin T Y, Liu W L, Li Y Q, Wu J Z, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 153303 (in Chinese) [马杰, 王晓峰, 辛统钰, 刘文良, 李玉清, 武寄洲, 肖连团, 贾锁堂 2015 物理学报 64 153303]
-
[1] Zahzam N, Vogt T, Mudrich M, Comparat D, Pillet P 2006 Phys. Rev. Lett. 96 023202
[2] Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G M 2014 Nature 510 518
[3] Anderlini M, Lee P J, Brown B L, Sebby-Strabley J, Phillips W D, Porto J V 2007 Nature 448 452
[4] Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307
[5] Grimm R, Weidemller M, Ovchinnikov Y B 2000 Adv. At. Mol. Opt. Phys. 42 95
[6] Saba M, Pasquini T A, Sanner C, Shin Y, Ketterle W, Pritchard D E 2005 Science 307 1945
[7] Gatan A, Miroshnychenko Y, Wilk T, Chotia A, Viteau M, Comparat D, Pillet P, Browaeys A, Grangier P 2009 Nature Phys. 5 115
[8] Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, Saffman M 2009 Nature Phys. 5 110
[9] Sebby-Strabley J, Newell R T R, Day J O, Brekke E, Walker T G 2005 Phys. Rev. A 71 021401
[10] Goban A, Choi K S, Alton D J, Ding D, Lacrote C, Pototschnig M, Thiele T, Stern N P, Kimble H J 2012 Phys. Rev. Lett. 109 033603
[11] Hackermller L, Schneider U, Moreno-Cardoner M, Kitagawa T, Best T, Will S, Demler E, Altman E, Bloch I, Paredes B 2010 Science 327 1621
[12] Younge K C, Knuffman B, Anderson S E, Raithel G 2010 Phys. Rev. Lett. 104 173001
[13] Barrett M D, Sauer J A, Chapman M S 2001 Phys. Rev. Lett. 87 010404
[14] Truscott A G, Strecker K E, McAlexander W I, Partridge G B, Hulet R G 2001 Science 291 2570
[15] Schreck F, Khaykovich L, Corwin K L, Ferrari G, Bourdel T, Cubizolles J, Salomon C 2001 Phys. Rev. Lett. 87 080403
[16] Granade S R, Gehm M E, O'Hara K M, Thomas J E 2002 Phys. Rev. Lett. 88 120405
[17] Marchant A L, Hndel S, Hopkins S A, Wiles T P, Cornish S L 2012 Phys. Rev. A 85 053647
[18] Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle M 1998 Nature 396 345
[19] Khler T, Gral K, Julienne P S 2006 Rev. Mod. Phys. 78 1311
[20] Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[21] Weber T, Herbig J, Mark M, Ngerl H C, Grimm R 2003 Science 299 232
[22] Kraemer T, Herbig J, Mark M, Weber T, Chin C, Ngerl H C, Grimm R 2004 Appl. Phys. B 79 1013
[23] Pinkse P W H, Mosk A, Weidemller M, Reynolds M W, Hijmans T W, Walraven J K M 1997 Phys. Rev. Lett. 78 990
[24] Stamper-Kurn D M, Miesner H J, Chikkatur A P, Inouye S, Stenger J, Ketterle W 1998 Phys. Rev. Lett. 81 2194
[25] Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A, Wieman C E 2001 Nature 412 295
[26] Khl M, Davis M J, Gardiner C W, Hnsch T W, Esslinger T 2002 Phys. Rev. Lett. 88 080402
[27] Erhard M, Schmaljohann H, Kronjger J, Bongs K, Sengstock K 2004 Phys. Rev. A 70 031602
[28] Comparat D, Fioretti A, Stern G, Dimova E, Tolra B L, Pillet P 2006 Phys. Rev. A 73 043410
[29] Ritter S, ttl A, Donner T, Bourdel T, Khl M, Esslinger T 2007 Phys. Rev. Lett. 98 090402
[30] Jacob D, Mimoun E, Sarlo L D, Weitz M, Dalibard J, Gerbier F 2011 New J. Phys. 13 065022
[31] Treutlein P, Chung K Y, Chu S 2001 Phys. Rev. A 63 051401
[32] Li Y, Wu J, Feng G, Nute J, Piano S, Hackermller L, Ma J, Xiao L, Jia S 2015 Laser Phys. Lett. 12 055501
[33] Hung C L, Zhang X B, Gemelke N, Chin C 2008 Phys. Rev. A 78 011604
[34] Li Y Q, Feng G S, Xu R D, Wang X F, Wu J Z, Chen G, Dai X C, Ma J, Xiao L T, Jia S T 2015 Phys. Rev. A 91 053604
[35] Zhang Y C, Wu J Z, Li Y Q, Ma J, Wang L R, Zhao Y T, Xiao L T, Jia S T 2011 Chin. Phys. B 20 123701
[36] Li Y Q, Ma J, Wu J Z, Zhang Y C, Zhao Y T, Wang L R, Xiao L T, Jia S T 2012 Chin. Phys. B 21 043404
[37] Wang Y H, Yang H J, Zhang T C, Wang J M 2006 Acta Phys. Sin. 55 3403 (in Chinese) [王彦华, 杨海菁, 张天才, 王军民 2006 物理学报 55 3403]
[38] Ma J, Wang X F, Xin T Y, Liu W L, Li Y Q, Wu J Z, Xiao L T, Jia S T 2015 Acta Phys. Sin. 64 153303 (in Chinese) [马杰, 王晓峰, 辛统钰, 刘文良, 李玉清, 武寄洲, 肖连团, 贾锁堂 2015 物理学报 64 153303]
计量
- 文章访问数: 6258
- PDF下载量: 189
- 被引次数: 0