搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导转子磁悬浮结构磁耦合特性及承载能力分析

张源 胡新宁 崔春艳 崔旭 牛飞飞 黄兴 王路忠 王秋良

引用本文:
Citation:

超导转子磁悬浮结构磁耦合特性及承载能力分析

张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良

Analysis on magnetic coupling characteristics and carrying capacity of superconducting rotor magnetic levitation structure

Zhang Yuan, Hu Xin-Ning, Cui Chun-Yan, Cui Xu, Niu Fei-Fei, Huang Xing, Wang Lu-Zhong, Wang Qiu-Liang
PDF
HTML
导出引用
  • 高速旋转的超导转子可用作高精度角速度传感器, 其转子结构的质量偏心和球面误差是限制其精度提升的关键因素, 转子结构越复杂, 其制作和装配过程造成的质量偏心和球面误差就越大, 则其测量角速度的精度越低. 基于此介绍了一种转子结构简单的超导转子磁悬浮结构, 并通过有限元方法对其磁悬浮结构的磁耦合特性进行研究, 分析其对超导转子磁支承力的影响. 然后基于磁路原理对磁支承结构的磁路建模, 提出了一种对超导转子磁支承结构承载能力分析的方法, 并设计出一种优化超导转子磁支承结构承载能力的方案. 研究结果为超导转子磁悬浮系统的结构设计和优化, 及其承载能力的分析和优化提供参考.
    The high-speed rotating superconducting rotor can be used as a sensor to measure angular speed or angular position. Mass unbalance and oblateness of superconducting rotor are the main error sources to measure angular speed or angular position. General Electric company has developed an superconducting rotor magnetic suspension device with an accuracy of 0.005° per hour, but its rotor structure is very complex. So it is difficult to process and assemble with extremely small mass-unbalance and small oblateness, which limits the further improvement of its accuracy. According to this, in this paper we introduce a magnetic support structure with a simple superconducting rotor compared with rotor made by General Electric company. The rotor sphere is a closed structure with no theoretical mass eccentricity. Its electromagnetic structure is simpler than General Electric company’s, and the stator coil is the torquer coil at the same time. The stator coil is used to accelerate the rotor, while the torquer is used to make the rotor erect. Based on the theory of superconducting electrodynamics and the finite element method, the characteristics of the magnetic suspension structure are analyzed. The magnetic field coupling effect of the stator and the suspension coils on the surface of the superconducting rotor are studied, and their influence on magnetic supporting force is also analyzed. The current direction of the two suspension coils should be opposite, otherwise the rotor will produce forced vibration, which will make it difficult to accelerate the superconducting rotor. Then the magnetic circuit theory and the finite element method are used to model the magnetic circuit of the magnetic levitation structure, and the critical carrying capacity of the magnetic suspension structure is calculated and the optimal suspension conditions are given. Finally, a method to optimize its carrying capacity is designed. Therefore, the currents of the suspension coils are controlled by the acceleration of superconducting cavity. Through this method, the maximum bearing capacity of the magnetic levitation structure can be increased by 78% compared with that of fixed optimal suspension current support. The analysis results provide a reference for the structural design and optimization of the superconducting rotor magnetic levitation system.
      通信作者: 胡新宁, xininghu@mail.iee.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 51721005)资助的课题.
      Corresponding author: Hu Xin-Ning, xininghu@mail.iee.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51721005).
    [1]

    胡新宁, 王厚生, 王晖, 王秋良 2010 光学精密工程 18 169

    Hu X N, Wang H S, Wang H, Wang Q L 2010 Opt. Precis. Eng. 18 169

    [2]

    江磊, 钟智勇, 仪德英, 张怀武 2008 仪器仪表学报 29 1115Google Scholar

    Jiang L, Zhong Z Y, Yi D Y, Zhang H W 2008 Chin. J. Sci. Instru. 29 1115Google Scholar

    [3]

    崔春艳, 胡新宁, 程军胜, 王晖, 王秋良 2015 物理学报 64 018403Google Scholar

    Cui C Y, Hu X N, Chen J S, Wang H, Wang Q L 2015 Acta Phys. Sin. 64 018403Google Scholar

    [4]

    Hu X N, Wang Q L, Cui C Y 2010 IEEE Trans. Appl. Supercond. 20 892Google Scholar

    [5]

    Wang H, Hu X N, Cui C Y, Wang L, Wang Q L 2018 IEEE Trans. Appl. Supercond. 28 5207905Google Scholar

    [6]

    Schoch K F, Darrel B 1967 Proceedings of the 1966 Cryogenic Engineering Conference Colorado, America, June 13–15, 1967 p657

    [7]

    汤继强 2005 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Tang J Q 2005 Ph. D. Dissertation ( Harbin: Harbin Engineering University ) (in Chinese)

    [8]

    Harding T H, Lawson D W 1968 AIAA J. 6 305Google Scholar

    [9]

    Schoch K F, Darrel B 1967 Adv. Cryog. Eng. 12 657

    [10]

    胡新宁, 赵尚武, 王厚生, 王晖, 王秋良 2008 稀有金属材料与工程 37 436Google Scholar

    Hu X N, Zhao S W, Wang H S, Wang H, Wang Q L 2008 Rare Metal Mater. Eng. 37 436Google Scholar

    [11]

    汤继强, 赵琳, 罗俊燕 2004 弹箭与制导学报 24 136Google Scholar

    Tang J Q, Zhao L, Luo J Y 2004 J. Projectiles Rockets Missiles Guidance 24 136Google Scholar

    [12]

    汤继强, 孙枫, 赵玉新, 郭秋芬 2005 哈尔滨工程大学学报 26 462

    Tang J Q, Sun F, Zhao Y X, Guo Q F 2005 J. Harbin Eng. Univ. 26 462

    [13]

    赵尚武, 胡新宁, 崔春燕, 王秋良 2008 稀有金属材料与工程 37 217Google Scholar

    Zhao S W, Hu X N, Cui C Y, Wang Q L 2008 Rare Metal Mater. Eng. 37 217Google Scholar

    [14]

    王浩, 王秋良, 胡新宁, 崔春燕, 苏华俊, 何忠名 2018 低温与超导 46 1Google Scholar

    Wang H, Wang Q L, Hu X N, Cui C Y, Su H J, He Z M 2018 Cyro. Supercond. 46 1Google Scholar

    [15]

    Buchhold T A 1961 Cryogenics 1 203Google Scholar

    [16]

    张裕恒 1997 超导物理 (合肥: 中国科学技术大学出版社) 第11, 12页

    Zhang Y H 1997 Superconducting Physics (Hefei: University of Science and Technology of China Press) pp11, 12 (in Chinese)

    [17]

    蔡圣善, 朱耕 1985 经典电动力学 (上海: 复旦大学出版社) 第229—254页

    Cai S S, Zh G 1985 Classical Electrodynamics (Shanghai: Fudan University Press) pp229–254 (in Chinese)

    [18]

    管惟炎, 李宏成, 蔡建华, 吴杭生 1981 超导电性物理基础 (北京: 科学出版社) 第47—51页

    Guan W Y, Li H C, Cai J H, Wu H S 1981 The Physical Basis of Superconductivity (Beijing: Science Press) pp47–51 (in Chinese)

    [19]

    林其壬, 赵佑民 1987 磁路设计原理 (北京: 科学出版社) 第87, 88页

    Lin Q R, Zhao Y M 1987 Magnetic Circuit Design Principle (Beijing: Machinery Industry Press) pp87, 88 (in Chinese)

    [20]

    邹继斌, 刘宝庭, 崔淑海, 郑萍 1998 磁路与磁场 (哈尔滨: 哈尔滨工业大学出版社) 第43—47页)

    Zou J B, Liu B T, Cui S H, Zhen P 1998 Magnetic Circuit and Magnetic Field (Harbin: Harbin Institute of Technology Press) pp43–47 (in Chinese)

    [21]

    刘建华, 王秋良, 严陆光, 李献 2010 电工技术学报 25 1

    Liu J H, Wang Q L, Yan L G, Li X 2010 Tran. China Electrotech. Soc. 25 1

  • 图 1  超导转子支承结构模型图

    Fig. 1.  Structure model of superconducting rotor supporting.

    图 2  超导转子悬浮在不同位置时的表面磁场分布 (a)平分子午线位置; (b)超导球腔底部位置; (c)超导球腔中心位置; (d)超导球腔侧偏1 mm位置

    Fig. 2.  Distribution of the surface magnetic field at different positions of the superconducting rotor suspension: (a) Meridian position; (b) the bottom position of the superconducting cavity; (c) the center of the superconducting cavity; (d) 1 mm off the side of the superconducting cavity.

    图 3  悬浮线圈电流同向-定子电流背心 (a) 悬浮线圈电流同向球腔磁场模型; (b)不同位置悬浮力分布

    Fig. 3.  Codirectional suspension coil currents-stator current backward to cavity center: (a) Cavity magnetic field model with codirectional suspension coil current; (b) suspension force distribution at different positions.

    图 4  悬浮线圈电流反向-定子电流背心 (a)悬浮线圈电流反向球腔磁场模型; (b)不同位置悬浮力分布

    Fig. 4.  Reverse suspension coil current-stator current backward to cavity center: (a) Spherical cavity magnetic field model with reverse suspension coil current; (b) suspension force distribution at different positions.

    图 5  下线圈单独作用, 超导转子受力分布

    Fig. 5.  Magnetic levitation force to superconducting rotor with the lower coil energized.

    图 6  定子单独通电超导子午线磁场

    Fig. 6.  Superconducting radial magnetic field with stator coils energized.

    图 7  磁场最大侧向偏移子午线

    Fig. 7.  Maximum lateral offset of the magnetic field meridian

    图 8  超导转子悬浮线圈磁路图

    Fig. 8.  Magnetic path diagram of superconducting rotor suspension coil.

    图 9  超导转子竖直方向偏移模型图

    Fig. 9.  Vertical direction offset model of superconducting rotor.

    图 10  超导转子竖直偏移磁阻值

    Fig. 10.  Vertical offset magnetoresistance value of the superconducting rotor.

    图 11  表面最大磁场与下电流和位置的关系

    Fig. 11.  The maximum magnetic field on the rotor surface with different suspension current and different suspension position.

    图 12  悬浮电流和临界磁场处偏移位置关系

    Fig. 12.  Offset position corresponding to the critical magnetic field with different suspension current in the bottom coil

    图 13  超导转子磁浮结构承载力及刚度 (a)不同悬浮电流对允许的竖直偏移位置; (b)不同悬浮电流对对应的最大承载力; (c)不同电流对的支承刚度

    Fig. 13.  Bearing capacity and stiffness of superconducting rotor maglev structure: (a) Allowable vertical offset position of different suspension current pairs; (b) maximum bearing capacity of different suspension current pairs; (c) support stiffness of different current pairs.

    图 14  单线圈悬浮超导转子最大承载力

    Fig. 14.  The maximum bearing capacity of a single-coil suspension superconducting rotor.

    图 15  悬浮电流对随壳体加速度a的变化

    Fig. 15.  Change of suspension current pair with shell acceleration.

    图 16  优化后超导转子的临界悬浮位置与对应的临界承载力 (a)临界悬浮位置随壳体加速度的变化; (b)临界承载力随壳体加速度的变化

    Fig. 16.  Critical suspension position and the corresponding critical bearing capacity of the optimized superconducting rotor: (a) The change of the critical suspension position with the shell acceleration; (b) the change of the critical bearing capacity with the shell acceleration.

  • [1]

    胡新宁, 王厚生, 王晖, 王秋良 2010 光学精密工程 18 169

    Hu X N, Wang H S, Wang H, Wang Q L 2010 Opt. Precis. Eng. 18 169

    [2]

    江磊, 钟智勇, 仪德英, 张怀武 2008 仪器仪表学报 29 1115Google Scholar

    Jiang L, Zhong Z Y, Yi D Y, Zhang H W 2008 Chin. J. Sci. Instru. 29 1115Google Scholar

    [3]

    崔春艳, 胡新宁, 程军胜, 王晖, 王秋良 2015 物理学报 64 018403Google Scholar

    Cui C Y, Hu X N, Chen J S, Wang H, Wang Q L 2015 Acta Phys. Sin. 64 018403Google Scholar

    [4]

    Hu X N, Wang Q L, Cui C Y 2010 IEEE Trans. Appl. Supercond. 20 892Google Scholar

    [5]

    Wang H, Hu X N, Cui C Y, Wang L, Wang Q L 2018 IEEE Trans. Appl. Supercond. 28 5207905Google Scholar

    [6]

    Schoch K F, Darrel B 1967 Proceedings of the 1966 Cryogenic Engineering Conference Colorado, America, June 13–15, 1967 p657

    [7]

    汤继强 2005 博士学位论文 (哈尔滨: 哈尔滨工程大学)

    Tang J Q 2005 Ph. D. Dissertation ( Harbin: Harbin Engineering University ) (in Chinese)

    [8]

    Harding T H, Lawson D W 1968 AIAA J. 6 305Google Scholar

    [9]

    Schoch K F, Darrel B 1967 Adv. Cryog. Eng. 12 657

    [10]

    胡新宁, 赵尚武, 王厚生, 王晖, 王秋良 2008 稀有金属材料与工程 37 436Google Scholar

    Hu X N, Zhao S W, Wang H S, Wang H, Wang Q L 2008 Rare Metal Mater. Eng. 37 436Google Scholar

    [11]

    汤继强, 赵琳, 罗俊燕 2004 弹箭与制导学报 24 136Google Scholar

    Tang J Q, Zhao L, Luo J Y 2004 J. Projectiles Rockets Missiles Guidance 24 136Google Scholar

    [12]

    汤继强, 孙枫, 赵玉新, 郭秋芬 2005 哈尔滨工程大学学报 26 462

    Tang J Q, Sun F, Zhao Y X, Guo Q F 2005 J. Harbin Eng. Univ. 26 462

    [13]

    赵尚武, 胡新宁, 崔春燕, 王秋良 2008 稀有金属材料与工程 37 217Google Scholar

    Zhao S W, Hu X N, Cui C Y, Wang Q L 2008 Rare Metal Mater. Eng. 37 217Google Scholar

    [14]

    王浩, 王秋良, 胡新宁, 崔春燕, 苏华俊, 何忠名 2018 低温与超导 46 1Google Scholar

    Wang H, Wang Q L, Hu X N, Cui C Y, Su H J, He Z M 2018 Cyro. Supercond. 46 1Google Scholar

    [15]

    Buchhold T A 1961 Cryogenics 1 203Google Scholar

    [16]

    张裕恒 1997 超导物理 (合肥: 中国科学技术大学出版社) 第11, 12页

    Zhang Y H 1997 Superconducting Physics (Hefei: University of Science and Technology of China Press) pp11, 12 (in Chinese)

    [17]

    蔡圣善, 朱耕 1985 经典电动力学 (上海: 复旦大学出版社) 第229—254页

    Cai S S, Zh G 1985 Classical Electrodynamics (Shanghai: Fudan University Press) pp229–254 (in Chinese)

    [18]

    管惟炎, 李宏成, 蔡建华, 吴杭生 1981 超导电性物理基础 (北京: 科学出版社) 第47—51页

    Guan W Y, Li H C, Cai J H, Wu H S 1981 The Physical Basis of Superconductivity (Beijing: Science Press) pp47–51 (in Chinese)

    [19]

    林其壬, 赵佑民 1987 磁路设计原理 (北京: 科学出版社) 第87, 88页

    Lin Q R, Zhao Y M 1987 Magnetic Circuit Design Principle (Beijing: Machinery Industry Press) pp87, 88 (in Chinese)

    [20]

    邹继斌, 刘宝庭, 崔淑海, 郑萍 1998 磁路与磁场 (哈尔滨: 哈尔滨工业大学出版社) 第43—47页)

    Zou J B, Liu B T, Cui S H, Zhen P 1998 Magnetic Circuit and Magnetic Field (Harbin: Harbin Institute of Technology Press) pp43–47 (in Chinese)

    [21]

    刘建华, 王秋良, 严陆光, 李献 2010 电工技术学报 25 1

    Liu J H, Wang Q L, Yan L G, Li X 2010 Tran. China Electrotech. Soc. 25 1

  • [1] 易显, 崔春艳, 胡新宁, 张源, 崔旭, 李昊, 王秋良. 完整球形超导转子极轴偏移特性主要影响因素分析. 物理学报, 2025, 74(1): . doi: 10.7498/aps.74.20241297
    [2] 张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良. 定中和驱动一体化的超导转子驱动方法. 物理学报, 2024, 73(3): 038401. doi: 10.7498/aps.73.20231455
    [3] 张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 王路忠, 王秋良. 旋转超导转子的氦气阻尼特性. 物理学报, 2024, 73(8): 088401. doi: 10.7498/aps.73.20232011
    [4] 董石泉, 何安, 刘伟, 薛存. 磁悬浮系统中多芯复合Nb3Sn超导线磁通跳跃的可调性研究. 物理学报, 2023, 72(1): 017401. doi: 10.7498/aps.72.20221252
    [5] 秦立振, 张振宇, 张坤, 丁建桥, 段智勇, 苏宇锋. 抗磁悬浮振动能量采集器动力学响应的仿真分析. 物理学报, 2018, 67(1): 018501. doi: 10.7498/aps.67.20171551
    [6] 马俊, 陈章龙, 县涛, 魏学刚, 杨万民, 陈森林, 李佳伟. 空心圆柱形永磁体内径对单畴GdBCO超导块材磁悬浮力的影响. 物理学报, 2018, 67(7): 077401. doi: 10.7498/aps.67.20172418
    [7] 林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波. 电磁悬浮条件下液态Fe50Cu50合金的对流和凝固规律研究. 物理学报, 2017, 66(13): 136401. doi: 10.7498/aps.66.136401
    [8] 温涛, 何剑, 张增星, 田竹梅, 穆继亮, 韩建强, 丑修建, 薛晨阳. 磁悬浮式电磁-摩擦复合生物机械能量采集器. 物理学报, 2017, 66(22): 228401. doi: 10.7498/aps.66.228401
    [9] 王晓锋, 李玉清, 冯国胜, 武寄洲, 马杰, 肖连团, 贾锁堂. 基于磁悬浮大体积交叉光学偶极阱的Dimple光阱装载研究. 物理学报, 2016, 65(8): 083701. doi: 10.7498/aps.65.083701
    [10] 崔春艳, 胡新宁, 程军胜, 王晖, 王秋良. 超导磁悬浮支承系统干扰力矩及漂移误差分析. 物理学报, 2015, 64(1): 018403. doi: 10.7498/aps.64.018403
    [11] 宋其晖, 石万元. 横向静磁场对电磁悬浮液滴稳定性的影响. 物理学报, 2014, 63(24): 248504. doi: 10.7498/aps.63.248504
    [12] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响. 物理学报, 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [13] 郭志超, 索红莉. 超导线的表面区域处理提高其磁场下的输运能力. 物理学报, 2012, 61(23): 237106. doi: 10.7498/aps.61.237106
    [14] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响. 物理学报, 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [15] 马俊, 杨万民. 条状永磁体的组合形式及间距对单畴GdBCO超导体磁悬浮力的影响. 物理学报, 2011, 60(7): 077401. doi: 10.7498/aps.60.077401
    [16] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究. 物理学报, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [17] 马伟增, 季诚昌, 李建国, 许振明. 电磁悬浮熔炼的温度特性. 物理学报, 2003, 52(4): 834-839. doi: 10.7498/aps.52.834
    [18] 马伟增, 季诚昌, 李建国. 直流磁场控制电磁悬浮熔炼旋转稳定性的理论分析. 物理学报, 2002, 51(10): 2233-2238. doi: 10.7498/aps.51.2233
    [19] 张裕恒, 王军. 超导弱连接的电压磁场关系(Ⅰ). 物理学报, 1984, 33(7): 952-958. doi: 10.7498/aps.33.952
    [20] 雷啸霖. 磁场中的超导膜. 物理学报, 1965, 21(9): 1619-1637. doi: 10.7498/aps.21.1619
计量
  • 文章访问数:  2976
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-05
  • 修回日期:  2023-03-28
  • 上网日期:  2023-04-18
  • 刊出日期:  2023-06-20

/

返回文章
返回