搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁悬浮式电磁-摩擦复合生物机械能量采集器

温涛 何剑 张增星 田竹梅 穆继亮 韩建强 丑修建 薛晨阳

引用本文:
Citation:

磁悬浮式电磁-摩擦复合生物机械能量采集器

温涛, 何剑, 张增星, 田竹梅, 穆继亮, 韩建强, 丑修建, 薛晨阳

Electromagnetic-triboeletric hybridized generator based on magnetic levitation for scavenging biomechanical energy

Wen Tao, He Jian, Zhang Zeng-Xing, Tian Zhu-Mei, Mu Ji-Liang, Han Jian-Qiang, Chou Xiu-Jian, Xue Chen-Yang
PDF
导出引用
  • 能量采集技术已经成为智能终端领域的一项关键技术,关于人体机械能采集方式也有大量的研究.针对人体机械能采集的应用需求,本文提出一种基于磁悬浮结构的电磁-摩擦复合式能量采集器.该能量采集器以磁悬浮结构作为核心部件,具有结构简单、感应灵敏、输出功率高的优点.在10 MΩ的外接负载时,两组摩擦发电单元输出功率分别为0.12 mW和0.13 mW;在1 kΩ外接负载时,两组电磁发电单元的输出功率分别为36 mW和38 mW.复合能量采集器通过电容储能后,电容器可以输出8 V电压,且输出信号为持续的直流信号,可以为计步器提供持续的能量供给,支撑计步器正常工作.设计的复合能量采集器对于可穿戴电子设备自供电工作模式的实现具有重要意义.
    The popularity of various portable electronics and biological health monitoring devices, such as pedometers, pulse oximeters, mobile telephones, wearable watches, has greatly changed our lifestyles and brought significant convenience to us. Energy harvesting has been a key technology for the self-powered mobile terminals, because there are many defects such as limited lifetime, large size, low energy density and environmentally unfriendly feature for the traditional chemical batteries. Lots of devices used for the energy harvesting of the human movement have been reported. However, some problems such as poor efficiency, low output power and low sensitivity need further studying. In this work, we demonstrate a novel magnetically levitated electromagnetic-triboelectric generator. The device size is φ4.8 cm×2.4 cm, and its weight is 80 g. The device uses the magnetically levitation structure as the core components, and the structure contains four magnets to form a magnetic array, in which three cylindrical magnets are placed around a bigger magnet. And two coils with polyvinyl-acetal enameled copper wires of 70 μm areplaced at the top and bottom of the device, respectively. Then two silica gel thin films with inverted tetrahedron patterned on the surface are integrated inside the structure. Then, we analyze the motion feature with the Maxwell simulation software, and discuss output characteristics of the two energy harvest units theoretically. The device possesses a high sensitivity, wide frequency response and high output performance. The dynamic response characteristics are analyzed in this paper.The frequency response range of the device is from 2 Hz to 20 Hz. The wider frequency response means that it can harvest more energy from complicated external environment. Furthermore, we analyze the output signal at low frequency, which has more than one wave crest after an environment perturbation. The triboelectric units can deliver peak output voltages of 70 V and 71 V, respectively, and the electromagnetic units each can deliver a peak output voltage of 10 V. In addition, the triboelectric units can produce peak output powers of 0.12 mW and 0.13 mW, respectively, under a loading resistance of 10 MΩ, while the electromagnetic units produce peak output powers of 36 mW and 38 mW, respectively, under a loading resistance of 1 kΩ. We discuss the energy output and energy conversion efficiency of the device, which are 750.89 μJ and 18%, respectively. Then we use the hybridized generator to charge a capacitor of 33 μF, the output voltage of which can reach 8 V in 2 seconds. Furthermore, the hybridized generator can power a pedometer continuously, which can work steadily and display movement data. This work has a significant step toward human mechanical energy harvesting and potential application in self-powered wearable devices.
      Corresponding author: Chou Xiu-Jian, chouxiujian@nuc.edu.cn;xuechenyang@nuc.edu.cn ; Xue Chen-Yang, chouxiujian@nuc.edu.cn;xuechenyang@nuc.edu.cn
    • Funds: Project supported by National High Technology Research and Development Program of China (Grant No. 2015AA042601) and the National Natural Science Foundation of China (Grant Nos. 61525107, 51605449, 51422510, 51675493).
    [1]

    Liu S Y (in Chinese) [刘思言 2014 世界电信 12 38]

    [2]

    Wang Z L 2008 Adv. Funct. Mater. 18 3553

    [3]

    Ron P, Roy K, Joe E, Phil J, Oh S, Pei Q B, Scott S 2001 Proceeding of SPIE 4329 148

    [4]

    Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328

    [5]

    Zhu G, Pan C, Guo W, Chen C Y, Zhou Y, Yu R, Wang Z L 2012 Nano Lett. 12 4960

    [6]

    Zhang K, Wang X, Yang Y, Wang Z L 2016 ACS. Nano 521 3529

    [7]

    Han M, Zhang X S, Sun X M, Meng B, Liu W, Zhang H X 2014 Sci. Rep. 4 4811

    [8]

    Wang X, Wang S, Yang Y, Wang Z L 2015 ACS Nano 9 4553

    [9]

    Hu Y, Yang J, Niu S, Wu W, Wang Z L 2014 ACS Nano 8 7442

    [10]

    Wu Y, Wang X, Yang Y, Wang Z L 2015 Nano Energy 11 162

    [11]

    Fan F R, Tang W, Yao Y, Luo J, Zhang C, Wang Z L 2014 Nanotechnology 25 135402

    [12]

    Rome L C, Flynn L, Goldman E M, Yoo T D 2005 Science 309 1725

    [13]

    Khaligh A, Zeng P, Zheng C 2010 IEEE Trans. Ind. Electron 57 850

    [14]

    Zhu G, Bai P, Chen J, Wang Z L 2013 Nano Energy 2 688

    [15]

    Bai P, Zhu G, Lin Z H, Jing Q S, Chen J, Gong Z, Ma J S, Wang Z L 2013 ACS Nano 7 3713

    [16]

    Zhang Z X, He J, Wen T, Zhai C, Han J Q, Mu J L, Jia W, Zhang B Z, Zhang W D, Chou X J, Xue C Y 2017 Nano Energy 33 88

    [17]

    Niu S M, Wang Z L 2015 Nano Energy 14 161

    [18]

    Peng L 2009 M. S. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [彭雷 2009 硕士学位论文(合肥: 中国科学技术大学)]

    [19]

    Zhang K W, Wang X, Yang Y, Wang Z L 2015 ACS Nano 9 3521

    [20]

    Leng Q 2015 M. S. Dissertation (Chongqing: Chongqing University) (in Chinese) [冷强 2015 硕士学位论文 (重庆: 重庆大学)]

    [21]

    Guo H Y, He X M, Zhong J W, Zhong Q Z, Leng Q, Hu C G, Chen J, Li T, Xi Y, Zhou J 2014 J. Mater. Chem. 2 2079

    [22]

    Zhong Q Z, Zhong J W, Hu B, Hu Q Y, Zhou J, Wang Z L 2013 Energ. Environ. Sci. 6 1779

    [23]

    Niu S M, Liu Y, Zhou Y S, Wang S H, Lin L, Wang Z L 2015 IEEE Trans. Electron Dev. 62 641

  • [1]

    Liu S Y (in Chinese) [刘思言 2014 世界电信 12 38]

    [2]

    Wang Z L 2008 Adv. Funct. Mater. 18 3553

    [3]

    Ron P, Roy K, Joe E, Phil J, Oh S, Pei Q B, Scott S 2001 Proceeding of SPIE 4329 148

    [4]

    Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328

    [5]

    Zhu G, Pan C, Guo W, Chen C Y, Zhou Y, Yu R, Wang Z L 2012 Nano Lett. 12 4960

    [6]

    Zhang K, Wang X, Yang Y, Wang Z L 2016 ACS. Nano 521 3529

    [7]

    Han M, Zhang X S, Sun X M, Meng B, Liu W, Zhang H X 2014 Sci. Rep. 4 4811

    [8]

    Wang X, Wang S, Yang Y, Wang Z L 2015 ACS Nano 9 4553

    [9]

    Hu Y, Yang J, Niu S, Wu W, Wang Z L 2014 ACS Nano 8 7442

    [10]

    Wu Y, Wang X, Yang Y, Wang Z L 2015 Nano Energy 11 162

    [11]

    Fan F R, Tang W, Yao Y, Luo J, Zhang C, Wang Z L 2014 Nanotechnology 25 135402

    [12]

    Rome L C, Flynn L, Goldman E M, Yoo T D 2005 Science 309 1725

    [13]

    Khaligh A, Zeng P, Zheng C 2010 IEEE Trans. Ind. Electron 57 850

    [14]

    Zhu G, Bai P, Chen J, Wang Z L 2013 Nano Energy 2 688

    [15]

    Bai P, Zhu G, Lin Z H, Jing Q S, Chen J, Gong Z, Ma J S, Wang Z L 2013 ACS Nano 7 3713

    [16]

    Zhang Z X, He J, Wen T, Zhai C, Han J Q, Mu J L, Jia W, Zhang B Z, Zhang W D, Chou X J, Xue C Y 2017 Nano Energy 33 88

    [17]

    Niu S M, Wang Z L 2015 Nano Energy 14 161

    [18]

    Peng L 2009 M. S. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [彭雷 2009 硕士学位论文(合肥: 中国科学技术大学)]

    [19]

    Zhang K W, Wang X, Yang Y, Wang Z L 2015 ACS Nano 9 3521

    [20]

    Leng Q 2015 M. S. Dissertation (Chongqing: Chongqing University) (in Chinese) [冷强 2015 硕士学位论文 (重庆: 重庆大学)]

    [21]

    Guo H Y, He X M, Zhong J W, Zhong Q Z, Leng Q, Hu C G, Chen J, Li T, Xi Y, Zhou J 2014 J. Mater. Chem. 2 2079

    [22]

    Zhong Q Z, Zhong J W, Hu B, Hu Q Y, Zhou J, Wang Z L 2013 Energ. Environ. Sci. 6 1779

    [23]

    Niu S M, Liu Y, Zhou Y S, Wang S H, Lin L, Wang Z L 2015 IEEE Trans. Electron Dev. 62 641

  • [1] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽. 钛酸钡介电调控提升纸基摩擦纳米发电机输出性能. 物理学报, 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [2] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [3] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件. 物理学报, 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [4] 曹杰, 顾伟光, 曲召奇, 仲艳, 程广贵, 张忠强. 基于变化静电场的非接触式摩擦纳米发电机设计与研究. 物理学报, 2020, 69(23): 230201. doi: 10.7498/aps.69.20201052
    [5] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件. 物理学报, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [6] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能. 物理学报, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [7] 杨黎晖, 葛扬, 马西奎. 永磁同步风力发电机随机分岔现象的全局分析. 物理学报, 2017, 66(19): 190501. doi: 10.7498/aps.66.190501
    [8] 王海峰, 李旺, 顾国彪, 沈俊, 滕启治. 风力发电机自循环蒸发内冷系统稳定性的研究. 物理学报, 2016, 65(3): 030501. doi: 10.7498/aps.65.030501
    [9] 程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Noshir S. Pesika, 张忠强, 郭立强, 王莹. 基于织构表面的摩擦静电发电机制备及其输出性能研究. 物理学报, 2016, 65(6): 060201. doi: 10.7498/aps.65.060201
    [10] 王晓锋, 李玉清, 冯国胜, 武寄洲, 马杰, 肖连团, 贾锁堂. 基于磁悬浮大体积交叉光学偶极阱的Dimple光阱装载研究. 物理学报, 2016, 65(8): 083701. doi: 10.7498/aps.65.083701
    [11] 滕启治, 谭欣, 武紫玉, 沈俊, 王海峰. 大型水轮发电机冷却方式综合评价方法的研究. 物理学报, 2015, 64(17): 178802. doi: 10.7498/aps.64.178802
    [12] 杨益飞, 骆敏舟, 邢绍邦, 韩晓新, 朱熀秋. 永磁同步发电机混沌运动分析及最优输出反馈H∞控制. 物理学报, 2015, 64(4): 040504. doi: 10.7498/aps.64.040504
    [13] 吴忠强, 杨阳, 徐纯华. 混沌状态下永磁同步发电机的故障诊断——LMI法研究. 物理学报, 2013, 62(15): 150507. doi: 10.7498/aps.62.150507
    [14] 余洋, 米增强, 刘兴杰. 双馈风力发电机混沌运动分析及滑模控制混沌同步. 物理学报, 2011, 60(7): 070509. doi: 10.7498/aps.60.070509
    [15] 吴淑花, 孙毅, 郝建红, 许海波. 耦合发电机系统的分岔和双参数特性. 物理学报, 2011, 60(1): 010507. doi: 10.7498/aps.60.010507
    [16] 杨国良, 李惠光. 直驱式永磁同步风力发电机中混沌运动的滑模变结构控制. 物理学报, 2009, 58(11): 7552-7557. doi: 10.7498/aps.58.7552
    [17] 王兴元, 武相军. 耦合发电机系统的自适应控制与同步. 物理学报, 2006, 55(10): 5077-5082. doi: 10.7498/aps.55.5077
    [18] 王兴元, 武相军. 变形耦合发电机系统中的混沌控制. 物理学报, 2006, 55(10): 5083-5093. doi: 10.7498/aps.55.5083
    [19] 金建中. 用固体绝缘材料代替高压气体来绝缘静电发电机的建议. 物理学报, 1956, 12(5): 487-489. doi: 10.7498/aps.12.487
    [20] 陈茂康. 一种脈流发电机之初记. 物理学报, 1933, 1(1): 87-90. doi: 10.7498/aps.1.87
计量
  • 文章访问数:  3646
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-07-31
  • 刊出日期:  2017-11-05

磁悬浮式电磁-摩擦复合生物机械能量采集器

    基金项目: 国家高技术研究发展计划(批准号:2015AA042601)和国家自然基金(批准号:61525107,51605449,51422510,51675493)资助的课题.

摘要: 能量采集技术已经成为智能终端领域的一项关键技术,关于人体机械能采集方式也有大量的研究.针对人体机械能采集的应用需求,本文提出一种基于磁悬浮结构的电磁-摩擦复合式能量采集器.该能量采集器以磁悬浮结构作为核心部件,具有结构简单、感应灵敏、输出功率高的优点.在10 MΩ的外接负载时,两组摩擦发电单元输出功率分别为0.12 mW和0.13 mW;在1 kΩ外接负载时,两组电磁发电单元的输出功率分别为36 mW和38 mW.复合能量采集器通过电容储能后,电容器可以输出8 V电压,且输出信号为持续的直流信号,可以为计步器提供持续的能量供给,支撑计步器正常工作.设计的复合能量采集器对于可穿戴电子设备自供电工作模式的实现具有重要意义.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回