-
超导转子凭借其独特的物理性质, 在精密测量领域具有巨大的应用潜力. 超导转子磁悬浮装置可制作高精度角速度传感器, 在外界干扰力矩作用下, 极轴偏移初始位置是引起超导转子极轴漂移误差的原因, 其中球面误差和地球自转属于主要误差源, 对超导转子球面误差引起的极轴研究结果为提升转子漂移精度、进行误差补偿提供了一定参考. 速度进行补偿是实现超导转子磁悬浮装置高精度的关键步骤. 基于此, 开展了完整球形超导转子球面误差和地球自转对超导转子极轴偏移特性的影响因素研究. 首先, 本文基于矢量磁势方程对超导转子磁支承结构进行建模, 分析了理想状态下(即悬浮于球腔中心位置)超导转子表面的磁场强度分布, 研究了磁支承力特性. 然后分析了球面误差引起的超导转子的磁支承干扰力矩, 并基于超导转子动力学方程, 建立了超导转子动力学模型, 给出了不同转子结构参数下超导转子极轴漂移误差的分布规律. 最后, 探讨了地球自转对超导转子漂移测试的影响. 研究结果为后续提升转子漂移精度、优化转子结构设计和漂移测试方法的完善提供了参考.Superconducting rotor has great potential applications in the field of precision measurement due to its unique physical properties. The superconducting rotor magnetic levitation device can be used to fabricate high-precision angular velocity sensors. Under the action of external interference torque, the pole-axis deviation from the initial position is the cause of the superconducting rotor pole-axis drift error, in which the spherical surface error and the earth’s rotation belong to the main sources of error, and compensating for the pole-axis drift speed caused by the spherical surface error of the superconducting rotor is a key step in realizing the high-precision superconducting rotor magnetic levitation device. Based on this, the factors affecting the spherical surface error of a complete spherical superconducting rotor and the rotation of the earth on the pole-axis offset characteristics of a superconducting rotor are investigated. First, the magnetic support structure of the superconducting rotor is modeled based on the vector magnetic potential equation, the magnetic field strength distribution on the surface of the superconducting rotor in the ideal state (i.e. suspended in the center of the spherical cavity) is analyzed, and the magnetic support force characteristics are investigated. Then the magnetic support interference moment of the superconducting rotor caused by the spherical surface error is analyzed, and a superconducting rotor dynamics model is established based on the superconducting rotor dynamics equations, and the distribution law of the superconducting rotor pole-axis drift error under different rotor structural parameters is given. Finally, the influence of the earth’s rotation on the superconducting rotor drift test is investigated. The results provide a reference for subsequently improving rotor drift accuracy, optimizing rotor structure design and improving drift test methods.
-
Keywords:
- Complete spherical superconducting rotor /
- spherical error /
- polar axis offset characteristics /
- earth’s rotation
-
图 8 (a) a2 = 100 μm, a3 = 1 μm, 超导转子产生的磁支承干扰力矩; (b) a2 = 1 μm, a3 = 100 μm, 超导转子产生的磁支承干扰力矩; (c) a2 = 100 μm, a3 = 1 μm, 超导转子磁支承干扰力矩产生的漂移速度; (d) a2 = 1 μm, a3 = 100 μm, 超导转子磁支承干扰力矩产生的漂移速度
Fig. 8. (a) When a2 = 100 μm, a3 = 1 μm, the superconducting rotor generates magnetic support interference torque; (b) when a2 = 1 μm, a3 = 100 μm, the superconducting rotor generates magnetic support interference torque; (c) a2 = 100 μm, a3 = 1 μm, drift velocity generated by the interference torque of the superconducting rotor magnetic support; (d) a2 = 1 μm, a3 = 100 μm, drift velocity generated by the interference torque of the superconducting rotor magnetic support.
图 10 (a)中心位置向下偏移0.1 mm时, 产生的磁支承干扰力矩; (b)中心位置向上偏移0.1 mm时, 产生的磁支承干扰力矩; (c)中心位置向下偏移0.1 mm时, 超导转子磁支承干扰力矩产生的漂移速度; (d)中心位置向上偏移0.1 mm时, 超导转子磁支承干扰力矩产生的漂移速度
Fig. 10. (a) When the center position is shifted downwards by 0.1 mm, the magnetic support interference torque generated by the superconducting rotor; (b) when the center position is shifted upwards by 0.1 mm, the magnetic support interference torque generated by the superconducting rotor; (c) drift velocity caused by magnetic support interference torque of superconducting rotor when the center position is shifted downwards by 0.1 mm; (d) drift velocity generated by the interference torque of the superconducting rotor magnetic support when the center position is shifted upwards by 0.1 mm.
-
[1] 赵尚武 2010 博士学位论文 (北京: 中国科学院大学)
Zhao S W 2010 Ph. D. Dissertation(Beijing: University of Chinese Academy of Sciences
[2] Christen D K, Kerchner H R, Sekula S T, Thorel P 1980 Phys. Rev. B 21 102Google Scholar
[3] 张裕恒 1997 超导物理(合肥: 中国科学技术大学出版社) 第11—12页
Zhang Y H 1997 Superconducting Physics (Hefei: University of Science and Technology of China Press) pp11–12
[4] 管惟炎, 李宏成, 蔡建华, 吴杭生 1981 超导电性物理基础(北京: 科学出版社)第47—51页
Guan W Y, Li H C, Cai J H, Wu H S 1981 The Physical Basis of Superconductivity (Beijing: Science Press) pp47–51
[5] Harding T H, Lawson D W 1968 AIAA J. 6 305Google Scholar
[6] Schoch K F, Darrel B 1967 Adv. Cryog. Eng. 12 657
[7] 张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良 2024 物理学报 73 038401Google Scholar
Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2024 Acta Phys. Sin. 73 038401Google Scholar
[8] 崔春艳, 胡新宁, 程军胜, 王晖, 王秋良 2015 物理学报 64 018403Google Scholar
Cui C Y, Hu X N, Chen J S, Wang H, Wang Q L 2015 Acta Phys. Sin. 64 018403Google Scholar
[9] 张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良 2023 物理学报 72 128401Google Scholar
Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2023 Acta Phys. Sin. 72 128401Google Scholar
[10] 杨再敏, 胡新宁, 崔春艳, 王秋良 2007 低温与超导 46 1Google Scholar
Yang Z M, Hu X N, Cui C Y, Wang Q L 2007 Cryog. Superconduct. 46 1Google Scholar
[11] 刘延柱 1979 静电陀螺仪动力学 (北京: 清华大学出版社) 第21—23页)
Liu Y Z 1979 Electrostatic Gyroscope Dynamics (Beijing: Tsinghua University Press) pp21–23
[12] Lin Q R, Zhao Y M 1987 Magnetic Circuit Design Principle(Beijing: Machinery Industry Press)pp 87–88 [林其壬, 赵佑民 1987 磁路设计原理(北京: 科学出版社)第87—88页]
Lin Q R, Zhao Y M 1987 Magnetic Circuit Design Principle(Beijing: Machinery Industry Press)pp 87–88
[13] 邹继斌, 刘宝庭, 崔淑海, 郑萍 1998 磁路与磁场(哈尔滨: 哈尔滨工业大学出版社)第 43—47 页)
Zou J B, Liu B T, Cui S H, Zhen P 1998 Magnetic Circuit and Magnetic Field (Harbin: Harbin Institute of Technology Press) pp43–47
[14] 刘延柱 2009陀螺力学 (北京: 科学出版社)
Liu Y Z 2009 Mechanics of Gyroscopes (Beijing: Science Press
[15] 高钟毓 2004 静电陀螺仪技术 (北京: 清华大学出版社) 第21—23页)
Gao Z Y 2004 Electrostatic Gyroscope Dynamics (Beijing: Tsinghua University Press) pp21–23
[16] 何川 2007 博士学位论文 (北京: 中国科学院大学)
He C 2010 Ph. D. Dissertation(Beijing: University of Chinese Academy of Sciences
[17] 胡新宁, 赵尚武, 王厚生, 王晖, 王秋良 2008稀有金属材料与工程 37 436
Hu X N, Zhao S W, Wang H S, Wang H, Wang Q L 2008 Rare Metal Mater. Eng. 37 436
[18] 崔春艳, 王秋良, 胡新宁, 赵尚武 2008稀有金属材料与工程 37 57
Cui C Y, Wang Q L, Hu X N, Zhao S W 2008 Rare Metal Mater. Eng. 37 57
[19] 王浩, 王秋良, 胡新宁, 崔春艳, 苏华骏, 何忠名 2018 低温与超导 46 1
Wang H, Wang Q L, Hu X N, Cui C Y, Su H J, He Z M 2018 Cryog. Superconduct. 46 1
[20] 汤继强 2005 博士学位论文(哈尔滨: 哈尔滨工程大学)
Tang J Q 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University
[21] 刘建华, 王秋良, 严陆光, 李献 2010 电工技术学报 25 1
Liu J H, Wang Q L, Yan L G, Li X 2010 Transactions China Electrotech. So. 25 1
计量
- 文章访问数: 110
- PDF下载量: 1
- 被引次数: 0