搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

完整球形超导转子极轴偏移特性的主要影响因素

易显 崔春艳 胡新宁 张源 崔旭 李昊 王秋良

引用本文:
Citation:

完整球形超导转子极轴偏移特性的主要影响因素

易显, 崔春艳, 胡新宁, 张源, 崔旭, 李昊, 王秋良

Analysis of main factors affecting polaraxis offset characteristics of intact spherical superconducting rotor

Yi Xian, Cui Chun-Yan, Hu Xin-Ning, Zhang Yuan, Cui Xu, Li Hao, Wang Qiu-Liang
PDF
HTML
导出引用
  • 超导转子凭借其独特的物理性质, 在精密测量领域具有巨大的应用潜力. 超导转子磁悬浮装置可制作高精度角速度传感器, 在外界干扰力矩作用下, 极轴偏移初始位置是引起超导转子极轴漂移误差的原因, 其中球面误差和地球自转属于主要误差源, 对超导转子球面误差引起的极轴研究结果为提升转子漂移精度、进行误差补偿提供了一定参考. 速度进行补偿是实现超导转子磁悬浮装置高精度的关键步骤. 基于此, 开展了完整球形超导转子球面误差和地球自转对超导转子极轴偏移特性的影响因素研究. 首先, 本文基于矢量磁势方程对超导转子磁支承结构进行建模, 分析了理想状态下(即悬浮于球腔中心位置)超导转子表面的磁场强度分布, 研究了磁支承力特性. 然后分析了球面误差引起的超导转子的磁支承干扰力矩, 并基于超导转子动力学方程, 建立了超导转子动力学模型, 给出了不同转子结构参数下超导转子极轴漂移误差的分布规律. 最后, 探讨了地球自转对超导转子漂移测试的影响. 研究结果为后续提升转子漂移精度、优化转子结构设计和漂移测试方法的完善提供了参考.
    Superconducting rotor has great potential applications in the field of precision measurement due to its unique physical properties. The superconducting rotor magnetic levitation device can be used to fabricate high-precision angular velocity sensors. Under the action of external interference torque, the pole-axis deviation from the initial position is the cause of the superconducting rotor pole-axis drift error, in which the spherical surface error and the earth’s rotation belong to the main sources of error, and compensating for the pole-axis drift speed caused by the spherical surface error of the superconducting rotor is a key step in realizing the high-precision superconducting rotor magnetic levitation device. Based on this, the factors affecting the spherical surface error of a complete spherical superconducting rotor and the rotation of the earth on the pole-axis offset characteristics of a superconducting rotor are investigated. First, the magnetic support structure of the superconducting rotor is modeled based on the vector magnetic potential equation, the magnetic field strength distribution on the surface of the superconducting rotor in the ideal state (i.e. suspended in the center of the spherical cavity) is analyzed, and the magnetic support force characteristics are investigated. Then the magnetic support interference moment of the superconducting rotor caused by the spherical surface error is analyzed, and a superconducting rotor dynamics model is established based on the superconducting rotor dynamics equations, and the distribution law of the superconducting rotor pole-axis drift error under different rotor structural parameters is given. Finally, the influence of the earth’s rotation on the superconducting rotor drift test is investigated. The results provide a reference for subsequently improving rotor drift accuracy, optimizing rotor structure design and improving drift test methods.
  • 图 1  超导转子磁悬浮结构

    Fig. 1.  Superconducting rotor magnetic levitation structure.

    图 2  (a) 悬浮线圈产生的磁场分布图; (b) 悬浮于中心位置时, 超导转子狭窄缝隙内磁感应强度分布图

    Fig. 2.  (a) Distribution of magnetic field generated by suspension coils; (b) distribution map of magnetic induction intensity in the narrow gap of the superconducting rotor when suspended at the center position.

    图 3  上下线圈同时通电2.7—3.0 A时超导磁悬浮系统磁密分布图

    Fig. 3.  Magnetic density distribution diagram of superconducting maglev system when the lower coil is energized at 2.7—3.0 A simultaneously.

    图 4  超导转子表面形变分布

    Fig. 4.  Surface deformation distribution of superconducting rotor.

    图 5  超导球形转子欧拉角示意图

    Fig. 5.  Schematic diagram of Euler angle of superconducting spherical rotor.

    图 6  超导转子磁感应强度计算模型

    Fig. 6.  Calculation model for magnetic induction intensity of superconducting rotor.

    图 7  (a)超导转子产生的磁支承干扰力矩; (b)磁支承力矩产生的漂移速度

    Fig. 7.  (a) Magnetic support interference torque generated by superconducting rotor; (b) drift velocity generated by magnetic support torque.

    图 8  (a) a2 = 100 μm, a3 = 1 μm, 超导转子产生的磁支承干扰力矩; (b) a2 = 1 μm, a3 = 100 μm, 超导转子产生的磁支承干扰力矩; (c) a2 = 100 μm, a3 = 1 μm, 超导转子磁支承干扰力矩产生的漂移速度; (d) a2 = 1 μm, a3 = 100 μm, 超导转子磁支承干扰力矩产生的漂移速度

    Fig. 8.  (a) When a2 = 100 μm, a3 = 1 μm, the superconducting rotor generates magnetic support interference torque; (b) when a2 = 1 μm, a3 = 100 μm, the superconducting rotor generates magnetic support interference torque; (c) a2 = 100 μm, a3 = 1 μm, drift velocity generated by the interference torque of the superconducting rotor magnetic support; (d) a2 = 1 μm, a3 = 100 μm, drift velocity generated by the interference torque of the superconducting rotor magnetic support.

    图 9  a2a3连续变化时, 磁力矩变化情况

    Fig. 9.  Changes in magnetic torque during a2 and a3 continuous variation.

    图 10  (a)中心位置向下偏移0.1 mm时, 产生的磁支承干扰力矩; (b)中心位置向上偏移0.1 mm时, 产生的磁支承干扰力矩; (c)中心位置向下偏移0.1 mm时, 超导转子磁支承干扰力矩产生的漂移速度; (d)中心位置向上偏移0.1 mm时, 超导转子磁支承干扰力矩产生的漂移速度

    Fig. 10.  (a) When the center position is shifted downwards by 0.1 mm, the magnetic support interference torque generated by the superconducting rotor; (b) when the center position is shifted upwards by 0.1 mm, the magnetic support interference torque generated by the superconducting rotor; (c) drift velocity caused by magnetic support interference torque of superconducting rotor when the center position is shifted downwards by 0.1 mm; (d) drift velocity generated by the interference torque of the superconducting rotor magnetic support when the center position is shifted upwards by 0.1 mm.

    图 11  悬浮在不同位置时, 狭窄缝隙内的磁感应强度大小分布

    Fig. 11.  Distribution of magnetic induction intensity in narrow gaps when suspended at different positions.

    图 12  地球自转产生的漂移运动

    Fig. 12.  Drift motion caused by the rotation of the Earth.

    图 13  由于地球自转, 转子极轴绕罐体轴旋转的轨迹在$xoy$面的投影

    Fig. 13.  Due to the rotation of the Earth, the trajectory of the rotor’s polar axis rotating around the axis of the tank is projected onto the $xoy$ plane.

    图 14  (a)偏1°时, 极轴运动轨迹; (b)偏4°时, 极轴运动轨迹

    Fig. 14.  (a) Polar axis motion trajectory at 1° deviation; (b) when offset by 4°, the trajectory of polar axis motion.

  • [1]

    赵尚武 2010 博士学位论文 (北京: 中国科学院大学)

    Zhao S W 2010 Ph. D. Dissertation(Beijing: University of Chinese Academy of Sciences

    [2]

    Christen D K, Kerchner H R, Sekula S T, Thorel P 1980 Phys. Rev. B 21 102Google Scholar

    [3]

    张裕恒 1997 超导物理(合肥: 中国科学技术大学出版社) 第11—12页

    Zhang Y H 1997 Superconducting Physics (Hefei: University of Science and Technology of China Press) pp11–12

    [4]

    管惟炎, 李宏成, 蔡建华, 吴杭生 1981 超导电性物理基础(北京: 科学出版社)第47—51页

    Guan W Y, Li H C, Cai J H, Wu H S 1981 The Physical Basis of Superconductivity (Beijing: Science Press) pp47–51

    [5]

    Harding T H, Lawson D W 1968 AIAA J. 6 305Google Scholar

    [6]

    Schoch K F, Darrel B 1967 Adv. Cryog. Eng. 12 657

    [7]

    张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良 2024 物理学报 73 038401Google Scholar

    Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2024 Acta Phys. Sin. 73 038401Google Scholar

    [8]

    崔春艳, 胡新宁, 程军胜, 王晖, 王秋良 2015 物理学报 64 018403Google Scholar

    Cui C Y, Hu X N, Chen J S, Wang H, Wang Q L 2015 Acta Phys. Sin. 64 018403Google Scholar

    [9]

    张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良 2023 物理学报 72 128401Google Scholar

    Zhang Y, Hu X N, Cui C Y, Cui X, Niu F F, Huang X, Wang L Z, Wang Q L 2023 Acta Phys. Sin. 72 128401Google Scholar

    [10]

    杨再敏, 胡新宁, 崔春艳, 王秋良 2007 低温与超导 46 1Google Scholar

    Yang Z M, Hu X N, Cui C Y, Wang Q L 2007 Cryog. Superconduct. 46 1Google Scholar

    [11]

    刘延柱 1979 静电陀螺仪动力学 (北京: 清华大学出版社) 第21—23页)

    Liu Y Z 1979 Electrostatic Gyroscope Dynamics (Beijing: Tsinghua University Press) pp21–23

    [12]

    Lin Q R, Zhao Y M 1987 Magnetic Circuit Design Principle(Beijing: Machinery Industry Press)pp 87–88 [林其壬, 赵佑民 1987 磁路设计原理(北京: 科学出版社)第87—88页]

    Lin Q R, Zhao Y M 1987 Magnetic Circuit Design Principle(Beijing: Machinery Industry Press)pp 87–88

    [13]

    邹继斌, 刘宝庭, 崔淑海, 郑萍 1998 磁路与磁场(哈尔滨: 哈尔滨工业大学出版社)第 43—47 页)

    Zou J B, Liu B T, Cui S H, Zhen P 1998 Magnetic Circuit and Magnetic Field (Harbin: Harbin Institute of Technology Press) pp43–47

    [14]

    刘延柱 2009陀螺力学 (北京: 科学出版社)

    Liu Y Z 2009 Mechanics of Gyroscopes (Beijing: Science Press

    [15]

    高钟毓 2004 静电陀螺仪技术 (北京: 清华大学出版社) 第21—23页)

    Gao Z Y 2004 Electrostatic Gyroscope Dynamics (Beijing: Tsinghua University Press) pp21–23

    [16]

    何川 2007 博士学位论文 (北京: 中国科学院大学)

    He C 2010 Ph. D. Dissertation(Beijing: University of Chinese Academy of Sciences

    [17]

    胡新宁, 赵尚武, 王厚生, 王晖, 王秋良 2008稀有金属材料与工程 37 436

    Hu X N, Zhao S W, Wang H S, Wang H, Wang Q L 2008 Rare Metal Mater. Eng. 37 436

    [18]

    崔春艳, 王秋良, 胡新宁, 赵尚武 2008稀有金属材料与工程 37 57

    Cui C Y, Wang Q L, Hu X N, Zhao S W 2008 Rare Metal Mater. Eng. 37 57

    [19]

    王浩, 王秋良, 胡新宁, 崔春艳, 苏华骏, 何忠名 2018 低温与超导 46 1

    Wang H, Wang Q L, Hu X N, Cui C Y, Su H J, He Z M 2018 Cryog. Superconduct. 46 1

    [20]

    汤继强 2005 博士学位论文(哈尔滨: 哈尔滨工程大学)

    Tang J Q 2005 Ph. D. Dissertation (Harbin: Harbin Engineering University

    [21]

    刘建华, 王秋良, 严陆光, 李献 2010 电工技术学报 25 1

    Liu J H, Wang Q L, Yan L G, Li X 2010 Transactions China Electrotech. So. 25 1

  • [1] 杨俊, 赵修良, 陈瑞达, 侯佳斌, 侯玉苗, 贺三军, 周超, 刘丽艳. NaCl, NaCl:Al与NaCl:Ca热释光峰值温度偏移特性. 物理学报, doi: 10.7498/aps.73.20240231
    [2] 张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 王路忠, 王秋良. 旋转超导转子的氦气阻尼特性. 物理学报, doi: 10.7498/aps.73.20232011
    [3] 雷雨, 赵丹宁, 乔海花. 地球自转速率变化的非线性特性. 物理学报, doi: 10.7498/aps.73.20240815
    [4] 张源, 胡新宁, 崔春艳, 崔旭, 牛飞飞, 黄兴, 王路忠, 王秋良. 超导转子磁悬浮结构磁耦合特性及承载能力分析. 物理学报, doi: 10.7498/aps.72.20230328
    [5] 侯阿慧, 胡以华, 方佳节, 赵楠翔, 徐世龙. 平动小目标光子探测回波特性及测距误差研究. 物理学报, doi: 10.7498/aps.71.20211998
    [6] 毕思昭, 彭朝晖. 地球曲率对远距离声传播的影响. 物理学报, doi: 10.7498/aps.70.20201858
    [7] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, doi: 10.7498/aps.69.20191141
    [8] 崔春艳, 胡新宁, 程军胜, 王晖, 王秋良. 超导磁悬浮支承系统干扰力矩及漂移误差分析. 物理学报, doi: 10.7498/aps.64.018403
    [9] 陆大全, 段秋玲, 詹强. 输入面纵向偏移诱导的强非局域非线性光传输特性变化. 物理学报, doi: 10.7498/aps.62.124205
    [10] 杨锦辉, 宋君强. 混沌系统平均初始误差增长饱和特性研究. 物理学报, doi: 10.7498/aps.61.170511
    [11] 欧军, 江月松, 黎芳, 刘丽. 拉盖尔-高斯光束在界面反射和折射的质心偏移特性研究. 物理学报, doi: 10.7498/aps.60.114203
    [12] 陈林辉, 饶长辉. 点源信标相关哈特曼-夏克波前传感器光斑偏移测量误差分析. 物理学报, doi: 10.7498/aps.60.090701
    [13] 牛超, 李夕海, 刘代志. 地球变化磁场Z分量的混沌动力学特性分析. 物理学报, doi: 10.7498/aps.59.3077
    [14] 沈全洪, 裴 京, 徐端颐, 马建设, 齐国生, 李莉华. 蓝光高密度光盘驱动器中聚焦误差特性分析. 物理学报, doi: 10.7498/aps.55.4132
    [15] 卞保民, 杨 玲, 李振华, 陈 笑, 贺安之, 沈中华. 衰减球面冲击波波阵面自模拟运动特性. 物理学报, doi: 10.7498/aps.53.840
    [16] 李宏成, 王瑞兰, 魏斌. 介质谐振器法测量高温超导薄膜微波表面电阻的误差分析. 物理学报, doi: 10.7498/aps.50.938
    [17] 汪定雄. 黑洞自转角速度的演化特征. 物理学报, doi: 10.7498/aps.48.1556
    [18] 朱世昌. 广义相对论中自转球体的引力质量亏损和转动质量效应. 物理学报, doi: 10.7498/aps.28.894
    [19] 沈浩明. 球面镜的散射理论. 物理学报, doi: 10.7498/aps.27.533
    [20] 吕保维. 无线电波绕球形地球的绕射理论中的若干数学问题. 物理学报, doi: 10.7498/aps.21.1744
计量
  • 文章访问数:  110
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-14
  • 修回日期:  2024-10-30
  • 上网日期:  2024-11-27

/

返回文章
返回