-
液相是化学和生物反应的关键环境, 由于溶剂化效应的存在, 液相分子的化学、生物反应动力学表现出显著区别于气相孤立分子的演化行为. 深入地研究液相分子的超快激发态动力学对于揭示复杂化学和生物过程的微观机制具有重要意义. 分子激发态的制备与演化通常发生在阿秒至皮秒的时间尺度, 光电子能谱不仅能够表征激发态分子的电子结构, 对分子构型的演化也很敏感, 被广泛用来研究激发态分子的超快动力学过程. 磁瓶式光电子谱仪、液体微束装置与高次谐波技术的结合, 可以在高真空条件下直接测量出射电子的能量分布及动力学演化信息, 是液相光电子能谱研究的核心手段. 本文系统地总结了该技术在液相超快动力学研究领域的最新进展, 详细地介绍了磁瓶式谱仪的基本工作原理、液体微束靶的制备方法; 讨论了其在生物分子激发态动力学演化、液相分子激发态非绝热过程、分子间库仑衰变和芳香族化合物水溶液的气-液界面性质等研究中的典型应用; 最后对技术瓶颈以及未来发展方向进行了探讨.The liquid phase serves as a critical environment for chemical and biological reactions. The chemical and biological reaction dynamics of molecules in liquids exhibit evolution behaviors that are significantly different from those of isolated molecules in the gas phase. The in-depth investigation of the ultrafast excited-state dynamics of liquid-phase molecules is of great importance for uncovering the microscopic mechanisms underlying complex chemical and biological processes. Photoelectron spectroscopy not only reveals the electronic structure of excited-state molecules but also exhibits high sensitivity to structural changes, making it a powerful tool for studying the relaxation dynamics. Liquid-phase time-resolved photoelectron spectroscopy utilizes a liquid microjet within a high vacuum. In this pump-probe technique, an initial pump pulse excites the liquids to initiate dynamics, followed by a delayed probe pulse that ionizes the evolving system. The time-dependent energy distribution of the resulting photoelectrons, which encodes the ultrafast dynamics, is measured by a magnetic-bottle time-of-flight (TOF) analyzer. This review systematically summarizes recent advancements in the time-resolved liquid-phase photoelectron spectroscopy technology for studying ultrafast dynamics in liquids, detailing the fundamental working principles of magnetic-bottle spectrometers and the preparation techniques for liquid microjet targets. Furthermore, typical applications are discussed, concluding with an analysis of current technical challenges and future research directions.
-
Keywords:
- liquid-phase systems /
- magnetic-bottle photoelectron spectrometer /
- ultrafast time resolution /
- electronic excited-state dynamics
-
图 6 高次谐波产生气室示意图. EW为激光入射窗, 聚集到接近小孔P1处. 在高压区HP注入气体, 通过两个小孔P2和P3及DP1和DP2差分泵保持低真空
Fig. 6. Schematic diagram of the high-harmonic generation gas cell. The fundamental beam is focused through the entrance window EW such that the focus is located close to pinhole P1. The high-pressure region HP is separated from the experiment by two differential pumping stages DP1 and DP2. The corresponding pinholes are P2 and P3.
图 11 (a) 由水二聚体中2a1轨道电离引发的ICD过程的示意图. 内价层空位是由XUV光子的吸收产生的; 外价电子通过向相邻的水分子释放额外的能量来填充内价空位, 导致其外价轨道进一步电离; (b) 光电子测量实验装置示意图; (c) 数据采集和分析示意图. 出自文献[64], 已获得授权
Fig. 11. (a) Schematic representation of the ICD process initiated by inner-valence ionization of 2a1 orbital in water dimer. The inner-valence vacancy is created by the absorption of an XUV photon; an outer-valence electron fills up the inner-valence vacancy via releasing the extra energy to the neighboring water molecule causing a further ionization in its outer-valence orbital; (b) the experimental setup for the photoelectron measurement; (c) schematic diagram of data acquisition and analysis, reproduced with permission from Ref. [64].
表 1 不同初始动能电子的能量分辨模拟结果
Table 1. Simulated energy resolution at different initial electron kinetic energies.
E/eV T0/ns $ \Delta t $/ns $ \Delta E/E $ 10 821.0 15.6 0.038 30 493.0 8.8 0.036 50 382.5 7.3 0.038 100 275.0 7.7 0.056 -
[1] Heitele H 1993 Angew. Chem. Int. Ed. Engl. 32 359
Google Scholar
[2] Muchová E, Gopakumar G, Unger I, Öhrwall G, Céolin D, Trinter F, Wilkinson I, Chatzigeorgiou E, Slavíček P, Hergenhahn U, Winter B, Caleman C, Björneholm O 2024 Nat. Commun. 15 8903
Google Scholar
[3] Suzuki T 2012 Int. Rev. Phys. Chem. 31 265
Google Scholar
[4] Venkatraman R K, Orr-Ewing A J. 2021 Acc. Chem. Res. 54 4383
Google Scholar
[5] Faubel M, Schlemmer S, Toennies J P 1988 Z. Phys. D: At. Mol. Clusters 10 269
Google Scholar
[6] Winter B, Faubel M 2006 Chem. Rev. 106 1176
Google Scholar
[7] Jordan I, Huppert M, Brown M A, van Bokhoven J A, Wörner H J 2015 Rev. Sci. Instrum. 86 123905
Google Scholar
[8] Improta R, Santoro F, Blancafort L 2016 Chem. Rev. 116 3540
Google Scholar
[9] Tusche C, Chen Y J, Schneider C M, Schneider C M, Kirschner J 2019 Ultramicroscopy 206 112815
Google Scholar
[10] Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477
Google Scholar
[11] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L Ph H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463.
Google Scholar
[12] Tsuboi T, Xu E Y, Bae Y K, Gillen K T 1988 Rev. Sci. Instrum. 59 1357
Google Scholar
[13] Eland J H D, Vieuxmaire O, Kinugawa T, Lablanquie P, Hall R I, Penent F 2003 Phys. Rev. Lett. 90 053003
Google Scholar
[14] Stolow A, Bragg A E, Neumark D M 2004 Chem. Rev. 104 1719
Google Scholar
[15] von Conta A, Tehlar A, Schletter A, Arasaki Y, Takatsuka K, Wörner H J 2018 Nat. Commun. 9 3162
Google Scholar
[16] Zhang P, Hoang V H, Wang C, Luu T T, Svoboda V, Le A T, Wörner H J 2023 Phys. Rev. Lett. 130 153201
Google Scholar
[17] Stolow A 2003 Annu. Rev. Phys. Chem. 54 89
Google Scholar
[18] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163
Google Scholar
[19] Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760
Google Scholar
[20] Worth G A, Cederbaum L S 2004 Annu. Rev. Phys. Chem. 55 127
Google Scholar
[21] Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S, Anumula S, Frassetto F, Poletto L, Palacios A, Decleva P, Greenwood J B, Martín F, Nisoli M 2014 Science 346 336
Google Scholar
[22] Riley J W, Wang B, Woodhouse J L, Assmann M, Worth G A, Fielding H H 2018 J. Phys. Chem. Lett. 9 678
Google Scholar
[23] Rijs A M, Backus E H G, De Lange C A, Westwood N P C, Janssen M H M 2000 J. Electron. Spectrosc. Relat. Phenom. 112 151
Google Scholar
[24] Jordan I, Huppert M, Rattenbacher D, Peper M, Jelovina D, Perry C, von Conta A, Schild A, Wörner H J 2020 Science 369 974
Google Scholar
[25] Seidel R, Thürmer S, Winter B 2011 J. Phys. Chem. Lett. 2 633
Google Scholar
[26] Faubel M, Siefermann K R, Liu Y, Abel B 2012 Acc. Chem. Res. 45 120
Google Scholar
[27] Erickson B A, Heim Z N, Pieri E, Liu E, Martinez T J, Neumark D M 2019 J. Phys. Chem. A 123 10676
Google Scholar
[28] Nishitani J, Karashima S, West C W, Suzuki T 2020 J. Chem. Phys. 152 144503
Google Scholar
[29] West C W, Nishitani J, Higashimura C, Suzuki T 2021 Mol. Phys. 119 1748240
Google Scholar
[30] Perry C F, Jordan I, Zhang P, von Conta A, Nunes F B, Wörner H J 2021 J. Phys. Chem. Lett. 12 2990
Google Scholar
[31] Stemer D, Buttersack T, Haak H, Malerz S, Schewe H C, Trinter F, Mudryk K, Pugini M, Credidio B, Seidel R, Hergenhahn U, Meijer G, Thürmer S, Winter B 2023 J. Chem. Phys. 158 234202
Google Scholar
[32] Nishitani J, West C W, Suzuki T 2017 Struct. Dyn. 4 044014
Google Scholar
[33] Kruit P, Read F H 1983 J. Phys. E: Sci. Instrum. 16 313
Google Scholar
[34] Neumark D M 2001 Annu. Rev. Phys. Chem. 52 255
Google Scholar
[35] Kurahashi N, Thürmer S, Liu S Y, Yamamoto Y, Karashima S, Bhattacharya A, Ogi Y, Horio T, Suzuki T 2021 Struct. Dyn. 8 034303
Google Scholar
[36] Borne K, O’Neal J T, Wang J, Isele E, Obaid R, Berrah N, Cheng X, Bucksbaum P H, James J, Kamalov A, Larsen K A, Li X, Lin M F, Liu Y, Marinelli A, Summers A M, Thierstein E, Wolf T J A, Rolles D, Walter P, Cryan J P, Driver T 2024 Rev. Sci. Instrum. 95 125110
Google Scholar
[37] Jordan I, Jain A, Gaumnitz T, Ma J, Wörner H J. 2018 Rev. Sci. Instrum. 89 053103
Google Scholar
[38] Perry C F 2021 Ph. D. Dissertation ( Zurich: ETH Zurich
[39] Popmintchev T, Chen M C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822
Google Scholar
[40] Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117
Google Scholar
[41] von Conta A, Huppert M, Wörner H J 2016 Rev. Sci. Instrum. 87 073102
Google Scholar
[42] Wang H, Xu Y, Ulonska S, Robinson J S, Ranitovic P, Kaindl R A 2015 Nat. Commun. 6 7459
Google Scholar
[43] Yang Y, Neumann T, Hengster J, Mainz R E, Elsner J, Mücke O D, Kärtner F X, Uphues T 2024 Photonics 11 525
Google Scholar
[44] Poletto L, Frassetto F 2010 Appl. Opt. 49 5465
Google Scholar
[45] Nelson T R, White A J, Bjorgaard J A, Sifain A E, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg A E, Tretiak S 2020 Chem. Rev. 120 2215
Google Scholar
[46] Bircher M P, Liberatore E, Browning N J, Brickel S, Hofmann C, Patoz A, Unke O T, Zimmermann T, Chergui M, Hamm P, Keller U, Meuwly M, Woerner H J, Vaníček J, Rothlisberger U 2017 Struct. Dyn. 4 061510
Google Scholar
[47] Harris S J, Murdock D, Zhang Y, Oliver T A A, Grubb M P, Orr-Ewing A J, Greetham G M, Clark I P, Towrie M, Bradforth S E, Ashfold M N R 2013 Phys. Chem. Chem. Phys. 15 6567
Google Scholar
[48] Heim Z N, Neumark D M. 2022 Acc. Chem. Res. 55 3652
Google Scholar
[49] Wang C, Waters M D J, Zhang P, Suchan J, Svoboda V, Luu T T, Perry C, Yin Z, Slavíček P, Wörner H J 2022 Nat. Chem. 14 1126
Google Scholar
[50] Cederbaum L S, Zobeley J, Tarantelli F 1997 Phys. Rev. Lett. 79 4778
Google Scholar
[51] Jahnke T, Czasch A, Schöffler M S, Schössler S, Knapp A, Käsz M, Titze J, Wimmer C, Kreidi K, Grisenti R E, Staudte A, Jagutzki O, Hergenhahn U, Schmidt-Böcking H, Dörner R 2004 Phys. Rev. Lett. 93 163401
Google Scholar
[52] Alizadeh E, Orlando T M, Sanche L. 2015 Annu. Rev. Phys. Chem. 66 379
Google Scholar
[53] Marburger S, Kugeler O, Hergenhahn U, Möller T 2003 Phys. Rev. Lett. 90 203401
Google Scholar
[54] Jahnke T, Czasch A, Schöffler M, Schössler S, Käsz M, Titze J, Kreidi K, Grisenti R E, Staudte A, Jagutzki O, Schmidt L Ph H, Weber T, Schmidt-Böcking H, Ueda K, Dörner R 2007 Phys. Rev. Lett. 99 153401
Google Scholar
[55] Sakai K, Stoychev S, Ouchi T, Higuchi I, Schöffler M, Mazza T, Fukuzawa H, Nagaya K, Yao M, Tamenori Y, Kuleff A I, Saito N, Ueda K 2011 Phys. Rev. Lett. 106 033401
Google Scholar
[56] Schnorr K, Senftleben A, Kurka M, Rudenko A, Foucar L, Schmid G, Broska A, Pfeifer T, Meyer K, Anielski D, Boll R, Rolles D, Kübel M, Kling M F, Jiang Y H, Mondal S, Tachibana T, Ueda K, Marchenko T, Simon M, Brenner G, Treusch R, Scheit S, Averbukh V, Ullrich J, Schröter C D, Moshammer R 2013 Phys. Rev. Lett. 111 093402
Google Scholar
[57] Iskandar W, Matsumoto J, Leredde A, Fléchard X, Gervais B, Guillous S, Hennecart D, Méry A, Rangama J, Zhou C L, Shiromaru H, Cassimi A 2015 Phys. Rev. Lett. 114 033201
Google Scholar
[58] Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018 Phys. Rev. A 97 010701
Google Scholar
[59] Jahnke T, Sann H, Havermeier T, Kreidi K, Stuck C, Meckel M, Schöffler M, Neumann N, Wallauer R, Voss S, Czasch A, Jagutzki O, Malakzadeh A, Afaneh F, Weber T, Schmidt-Böcking H, Dörner R 2010 Nat. Phys. 6 139
Google Scholar
[60] Ren X, Wang E, Skitnevskaya A D, Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062
Google Scholar
[61] Zhou J, Jia S, Skitnevskaya A D, Wang E, Hähnel T, Grigoricheva E K, Xue X, Li J X, Kuleff A I, Dorn A, Ren X 2022 J. Phys. Chem. Lett. 13 4272
Google Scholar
[62] Shcherbinin M, LaForge A C, Sharma V, Devetta M, Richter R, Moshammer R, Pfeifer T, Mudrich M 2017 Phys. Rev. A 96 013407
Google Scholar
[63] Kazandjian S, Rist J, Weller M, Wiegandt F, Aslitürk D, Grundmann S, Kircher M, Nalin G, Pitters D, Vela Pérez I, Waitz M, Schiwietz G, Griffin B, Williams J B, Dörner R, Schöffler M, Miteva T, Trinter F, Jahnke T, Sisourat N 2018 Phys. Rev. A 98 050701
Google Scholar
[64] Zhang P, Perry C, Luu T T, Matselyukh D, Wörner H J 2022 Phys. Rev. Lett. 128 133001
Google Scholar
[65] Zhang P, Trester J, Dubský J, Kolorenč P, Slavíček P, Wörner H J 2025 Nat. Commun. 16 6732
Google Scholar
[66] Jungwirth P, Tobias D J. 2006 Chem. Rev. 106 1259
Google Scholar
[67] Tobias D J, Stern A C, Baer M D, Levin Y, Mundy C J 2013 Annu. Rev. Phys. Chem. 64 339
Google Scholar
[68] Knipping E M, Lakin M J, Foster K L, Jungwirth P, Tobias D J, Gerber R B, Dabdub D, Finlayson-Pitts B J 2000 Science 288 301
Google Scholar
[69] Yamamoto Y I, Hirano T, Ishiyama T, Morita A, Suzuki T 2025 J. Am. Chem. Soc. 147 4026
Google Scholar
[70] Menzi S, Knopp G, Al Haddad A, Augustin S, Borca C, Gashi D, Huthwelker T, James D, Jin J, Pamfilidis G, Schnorr K, Sun Z, Wetter R, Zhang Q, Cirelli C 2020 Rev. Sci. Instrum. 91 105109
Google Scholar
[71] Koga M, Kang D H, Heim Z N, Meyer P, Erickson B A, Haldar N, Baradaran N, Havenith M, Neumark D M 2024 Phys. Chem. Chem. Phys. 26 13106
Google Scholar
[72] Koga M, Kang D H, Heim Z N, Haldar N, Neumark D M 2025 arXiv: 2503. 16840.
[73] Ekimova M, Quevedo W, Faubel M, Wernet P, Nibbering E T J. 2015 Struct. Dyn. 2 054301
Google Scholar
[74] Kumar G, Roy A, McMullen R S, Kutagulla S, Bradforth S E 2018 Faraday Discuss. 212 359
Google Scholar
[75] Tzankov P, Zheng J, Mero M, Polli D, Manzoni C, Cerullo G 2006 Opt. Lett. 31 3629
Google Scholar
[76] Liebel M, Schnedermann C, Kukura P. 2014 Opt. Lett. 39 4112
Google Scholar
计量
- 文章访问数: 454
- PDF下载量: 16
- 被引次数: 0








下载: