-
液相是化学和生物反应的关键环境,由于溶剂化效应的存在,液相分子的化学、生物反应动力学表现出显著区别于气相孤立分子的演化行为。深入研究液相分子的超快激发态动力学对于揭示复杂化学和生物过程的微观机制具有重要意义。分子激发态的制备与演化通常发生在阿秒至皮秒的时间尺度,光电子能谱不仅能够表征激发态分子的电子结构,对分子构型的演化也很敏感,被广泛用来研究激发态分子的超快动力学过程。磁瓶式光电子谱仪、液体微束装置与高次谐波技术的结合,可以在高真空条件下直接测量出射电子的能量分布及动力学演化信息,是液相光电子能谱研究的核心手段。本文系统总结了该技术在液相超快动力学研究领域的最新进展,详细介绍了磁瓶式谱仪的基本工作原理、液体微束靶的制备方法;讨论了其在生物分子激发态动力学演化、液相分子激发态非绝热过程、分子间库仑衰变和芳香族化合物水溶液的气-液界面性质等研究中的典型应用;最后对技术瓶颈以及未来发展方向进行了探讨。The liquid phase serves as a critical environment for chemical and biological reactions. The chemical and biological reaction dynamics of molecules in liquids performs evolution behaviors significantly distinct from those of isolated molecules in the gas phase. In-depth investigation of the ultrafast excited-state dynamics of liquid-phase molecules is of great importance for uncovering the microscopic mechanisms underlying complex chemical and biological processes. Photoelectron spectroscopy not only reveals the electronic structure of excited-state molecules but also exhibits highly sensitivity to structural changes, making it a powerful tool for studying the relaxation dynamics. Liquid-phase time-resolved photoelectron spectroscopy utilizes a liquid microjet within a high vacuum. In this pump-probe technique, an initial pump pulse excites the liquids to initiate dynamics, followed by a delayed probe pulse that ionizes the evolving system. The time-dependent energy distribution of the resulting photoelectrons, which encodes the ultrafast dynamics, is measured by a magnetic-bottle time-of-flight (TOF) analyzer. This review systematically summarizes recent advancements in the time-resolved liquid-phase photoelectron spectroscopy technology for studying ultrafast dynamics in liquids, detailing the fundamental working principles of magnetic-bottle spectrometers and the preparation techniques for liquid microjet targets. Furthermore, typical applications are discussed, concluding with an analysis of current technical challenges and future research directions.
-
Keywords:
- Liquid-phase systems /
- Magnetic-bottle photoelectron spectrometer /
- Ultrafast time resolution /
- Electronic excited-state dynamics
-
[1] Heitele H 1993 Angew. Chem. Int. Ed. Engl. 32 359.
[2] Muchová E, Gopakumar G, Unger I, Öhrwall G, Céolin D, Trinter F, Wilkinson I, Chatzigeorgiou E, Slavíček P, Hergenhahn U, Winter B, Caleman C, Björneholm O 2024 Nat. Commun. 15 8903.
[3] Suzuki T 2012 Int. Rev. Phys. Chem. 31 265.
[4] Venkatraman R K, Orr-Ewing A J. 2021 Acc. Chem. Res. 54 4383.
[5] Faubel M, Schlemmer S, Toennies J P 1988 Z. Phys. D:At., Mol. Clusters 10 269.
[6] Winter B, Faubel M 2006 Chem. Rev. 106 1176.
[7] Jordan I, Huppert M, Brown M A, van Bokhoven J A, Wörner H J 2015 Rev. Sci. Instrum. 86 123905.
[8] Improta R, Santoro F, Blancafort L 2016 Chem. Rev. 116 3540.
[9] Tusche C, Chen Y J, Schneider C M, Schneider C M, Kirschner J 2019 Ultramicroscopy 206 112815.
[10] Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477.
[11] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L Ph H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463.
[12] Tsuboi T, Xu E Y, Bae Y K,Gillen K T 1988 Rev. Sci. Instrum. 59 1357.
[13] Eland J H D, Vieuxmaire O, Kinugawa T, Lablanquie P, Hall R I, Penent F 2003 Phys. Rev. Lett. 90 053003.
[14] Stolow A, Bragg A E, Neumark D M 2004 Chem. Rev. 104 1719.
[15] von Conta A, Tehlar A, Schletter A, Arasaki Y, Takatsuka K, Wörner H J 2018 Nat. Commun. 9 3162.
[16] Zhang P, Hoang V H, Wang C, Luu T T, Svoboda V, Le A T, Wörner H J 2023 Phys. Rev. Lett. 130 153201.
[17] Stolow A 2003 Annu. Rev. Phys. Chem. 54 89.
[18] Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163.
[19] Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760.
[20] Worth G A, Cederbaum L S 2004 Annu. Rev. Phys. Chem. 55 127.
[21] Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S, Anumula S, Frassetto F, Poletto L, Palacios A, Decleva P, Greenwood J B, Martín F, Nisoli M 2014 Science 346 336.
[22] Riley J W, Wang B, Woodhouse J L, Assmann M, Worth G A, Fielding H H 2018 J. Phys. Chem. Lett. 9 678.
[23] Rijs A M, Backus E H G, De Lange C A, Westwood N P C, Janssen M H M 2000 J. Electron. Spectrosc. Relat. Phenom. 112 151.
[24] Jordan I, Huppert M, Rattenbacher D, Peper M, Jelovina D, Perry C, von Conta A, Schild A, Wörner H J 2020 Science 369 974.
[25] Seidel R, Thürmer S, Winter B 2011 J. Phys. Chem. Lett. 2 633.
[26] Faubel M, Siefermann K R, Liu Y, Abel B 2012 Acc. Chem. Res. 45 120.
[27] Erickson B A, Heim Z N, Pieri E, Liu E, Martinez T J, Neumark D M 2019 J. Phys. Chem. A 123 10676.
[28] Nishitani J, Karashima S, West C W, Suzuki T 2020 J. Chem. Phys. 152 144503.
[29] West C W, Nishitani J, Higashimura C, Suzuki T 2021 Mol. Phys. 119 1748240.
[30] Perry C F, Jordan I, Zhang P, von Conta A, Nunes F B, Wörner H J 2021 J. Phys. Chem. Lett. 12 2990.
[31] Stemer D, Buttersack T, Haak H, Malerz S, Schewe H C, Trinter F, Mudryk K, Pugini M, Credidio B, Seidel R, Hergenhahn U, Meijer G, Thürmer S, Winter B 2023 J. Chem. Phys. 158 234202.
[32] Nishitani J, West C W, Suzuki T 2017 Struct. Dyn. 4 044014.
[33] Kruit P, Read F H 1983 J. Phys. E:Sci. Instrum. 16 313.
[34] Neumark D M 2001 Annu. Rev. Phys. Chem. 52 255.
[35] Kurahashi N, Thürmer S, Liu S Y, Yamamoto Y, Karashima S, Bhattacharya A, Ogi Y, Horio T, Suzuki T 2021 Struct. Dyn. 8 034303.
[36] Borne K, O'Neal J T, Wang J, Isele E, Obaid R, Berrah N, Cheng X, Bucksbaum P H, James J, Kamalov A, Larsen K A, Li X, Lin M F, Liu Y, Marinelli A, Summers A M, Thierstein E, Wolf T J A, Rolles D, Walter P, Cryan J P, Driver T 2024 Rev. Sci. Instrum. 95 125110.
[37] Jordan I, Jain A, Gaumnitz T, Ma J, Wörner H J. 2018 Rev. Sci. Instrum. 89 053103.
[38] Perry C F 2021 Time-resolved Photoelectron Spectroscopy of Liquids (PhD Thesis, ETH Zurich, Zurich).
[39] Popmintchev T, Chen M C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822.
[40] Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117.
[41] von Conta A, Huppert M, Wörner H J 2016 Rev. Sci. Instrum. 87 073102.
[42] Wang H, Xu Y, Ulonska S, Robinson J S, Ranitovic P, Kaindl R A 2015 Nat. Commun. 6 7459.
[43] Yang Y, Neumann T, Hengster J, Mainz R E, Elsner J, Mücke O D, Kärtner F X, Uphues T 2024 Photonics 11 525.
[44] Poletto L, Frassetto F 2010 Appl. Opt. 49 5465.
[45] Nelson T R, White A J, Bjorgaard J A, Sifain A E, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg A E, Tretiak S 2020 Chem. Rev. 120 2215.
[46] Bircher M P, Liberatore E, Browning N J, Brickel S, Hofmann C, Patoz A, Unke O T, Zimmermann T, Chergui M, Hamm P, Keller U, Meuwly M, Woerner H J, Vaníček J, Rothlisberger U 2017 Struct. Dyn. 4 061510.
[47] Harris S J, Murdock D, Zhang Y, Oliver T A A, Grubb M P, Orr-Ewing A J, Greetham G M, Clark I P, Towrie M, Bradforth S E, Ashfold M N R 2013 Phys. Chem. Chem. Phys. 15 6567.
[48] Heim Z N, Neumark D M. 2022 Acc. Chem. Res. 55 3652.
[49] Wang C, Waters M D J, Zhang P, Suchan J, Svoboda V, Luu T T, Perry C, Yin Z, Slavíček P, Wörner H J 2022 Nat. Chem. 14 1126.
[50] Cederbaum L S, Zobeley J, Tarantelli F. 1997 Phys. Rev. Lett. 79 4778.
[51] Jahnke T, Czasch A, Schöffler M S, Schössler S, Knapp A, Käsz M, Titze J, Wimmer C, Kreidi K, Grisenti R E, Staudte A, Jagutzki O, Hergenhahn U, Schmidt-Böcking H, Dörner R 2004 Phys. Rev. Lett. 93 163401.
[52] Alizadeh E, Orlando T M, Sanche L. 2015 Annu. Rev. Phys. Chem. 66 379.
[53] Marburger S, Kugeler O, Hergenhahn U, Möller T 2003 Phys. Rev. Lett. 90 203401.
[54] Jahnke T, Czasch A, Schöffler M, Schössler S, Käsz M, Titze J, Kreidi K, Grisenti R E, Staudte A, Jagutzki O, Schmidt L Ph H, Weber T, Schmidt-Böcking H, Ueda K, Dörner R 2007 Phys. Rev. Lett. 99 153401.
[55] Sakai K, Stoychev S, Ouchi T, Higuchi I, Schöffler M, Mazza T, Fukuzawa H, Nagaya K, Yao M, Tamenori Y, Kuleff A I, Saito N, Ueda K 2011 Phys. Rev. Lett. 106 033401.
[56] Schnorr K, Senftleben A, Kurka M, Rudenko A, Foucar L, Schmid G, Broska A, Pfeifer T, Meyer K, Anielski D, Boll R, Rolles D, Kübel M, Kling M F, Jiang Y H, Mondal S, Tachibana T, Ueda K, Marchenko T, Simon M, Brenner G, Treusch R, Scheit S, Averbukh V, Ullrich J, Schröter C D, Moshammer R 2013 Phys. Rev. Lett. 111 093402.
[57] Iskandar W, Matsumoto J, Leredde A, Fléchard X, Gervais B, Guillous S, Hennecart D, Méry A, Rangama J, Zhou C L, Shiromaru H, Cassimi A 2015 Phys. Rev. Lett. 114 033201.
[58] Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018 Phys. Rev. A 97 010701.
[59] Jahnke T, Sann H, Havermeier T, Kreidi K, Stuck C, Meckel M, Schöffler M, Neumann N, Wallauer R, Voss S, Czasch A, Jagutzki O, Malakzadeh A, Afaneh F, Weber T, Schmidt-Böcking H, Dörner R 2010 Nat. Phys. 6 139.
[60] Ren X, Wang E, Skitnevskaya A D,Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062.
[61] Zhou J, Jia S, Skitnevskaya A D, Wang E, Hähnel T, Grigoricheva E K, Xue X, Li J X, Kuleff A I, Dorn A, Ren X 2022 J. Phys. Chem. Lett. 13 4272.
[62] Shcherbinin M, LaForge A C, Sharma V, Devetta M, Richter R, Moshammer R, Pfeifer T, Mudrich M 2017 Phys. Rev. A 96 013407.
[63] Kazandjian S, Rist J, Weller M, Wiegandt F, Aslitürk D, Grundmann S, Kircher M, Nalin G, Pitters D, Vela Pérez I, Waitz M, Schiwietz G, Griffin B, Williams J B, Dörner R, Schöffler M, Miteva T, Trinter F, Jahnke T, Sisourat N 2018 Phys. Rev. A 98 050701.
[64] Zhang P, Perry C, Luu T T, Matselyukh D, Wörner H J 2022 Phys. Rev. Lett. 128 133001.
[65] Zhang P, Trester J, Dubský J, Kolorenč P, Slavíček P, Wörner H J 2025 Nat. Commun. 16 6732.
[66] Jungwirth P, Tobias D J. 2006 Chem. Rev. 106 1259.
[67] Tobias D J, Stern A C, Baer M D, Levin Y, Mundy C J 2013 Annu. Rev. Phys. Chem. 64 339.
[68] Knipping E M, Lakin M J, Foster K L, Jungwirth P, Tobias D J, Gerber R B, Dabdub D, Finlayson-Pitts B J 2000 Science 288 301.
[69] Yamamoto Y-I, Hirano T, Ishiyama T, Morita A, Suzuki T 2025 J. Am. Chem. Soc. 147 4026.
[70] Menzi S, Knopp G, Al Haddad A, Augustin S, Borca C, Gashi D, Huthwelker T, James D, Jin J, Pamfilidis G, Schnorr K, Sun Z, Wetter R, Zhang Q, Cirelli C 2020 Rev. Sci. Instrum. 91 105109.
[71] Koga M, Kang D H, Heim Z N, Meyer P, Erickson B A, Haldar N, Baradaran N, Havenith M, Neumark D M 2024 Phys. Chem. Chem. Phys. 26 13106.
[72] Koga M, Kang D H, Heim Z N, Haldar N, Neumark D M 2025 arXiv:2503.16840.
[73] Ekimova M, Quevedo W, Faubel M, Wernet P, Nibbering E T J. 2015 Struct. Dyn. 2 054301.
[74] Kumar G, Roy A, McMullen R S, Kutagulla S, Bradforth S E 2018 Faraday Discuss. 212 359.
[75] Tzankov P, Zheng J, Mero M, Polli D, Manzoni C, Cerullo G 2006 Opt. Lett. 31 3629.
[76] Liebel M, Schnedermann C, Kukura P. 2014 Opt. Lett. 39 4112.
计量
- 文章访问数: 12
- PDF下载量: 0
- 被引次数: 0