搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阿秒符合干涉仪与原子分子及团簇体系阿秒光电子电离延迟测量

王旭涵 欧显彬 宫晓春

引用本文:
Citation:

阿秒符合干涉仪与原子分子及团簇体系阿秒光电子电离延迟测量

王旭涵, 欧显彬, 宫晓春

Attosecond coincidence interferometer and measurement of attosecond photoelectron ionization time delay in atomic, molecular and cluster systems

WANG Xuhan, OU Xianbin, GONG Xiaochun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 孤立原子、分子及复杂体系中电子本征时间尺度演化规律及调控机理, 一直是原子分子物理基础科研与量子材料前沿应用十分重要的科学问题. 近二十年阿秒光脉冲产生以及阿秒度量谱学的发展, 为这一科学问题的探索带来新的契机和挑战. 传统飞行时间谱仪、速度动量成像谱仪等探测方式已能在极高时间能量分辨率下揭示阿秒时间尺度光电离电子发射过程中的阿秒散射相移过程, 然而在多体符合测量、三维动量关联方面存在局限性, 这极大限制了对多电子关联、电子-核耦合非绝热超快动力学等物理过程的探索. 为实现对光电离过程中电子、离子三维动量的多维实时观测, 电子-离子符合测量系统中引入了阿秒干涉仪, 发展出符合干涉测量系统. 本文介绍了一种结合阿秒脉冲泵浦-红外飞秒脉冲探测和冷靶反冲离子动量谱仪符合测量的阿秒符合干涉仪, 该装置能够对原子分子体系中所有带电粒子碎片的动量进行阿秒时间分辨成像, 从而深入探究光电离过程的动力学机制; 并着重介绍近年来阿秒符合干涉仪在原子、分子以及更复杂体系的光电离动力学研究中的应用和取得的突破性进展.
    The evolution mechanisms of electrons in isolated atoms, molecules and complex systems on a natural time-scale have long been a fundamental question in atomic and molecular physics, with significant implications for the applications of quantum materials. Over the past two decades, the development of attosecond light pulses and attosecond metrology has opened new opportunities for investigating the electronic dynamics, while also posing new challenges. Traditional detection techniques, such as time-of-flight and velocity map imaging spectrometers, can be used to study the attosecond scattering phase shifts in the photoemission and ionization processes with extremely high temporal and energy resolution. However, the limitations in multi-particle coincidence detection and three-dimensional momentum correlation limit the deeper exploration of many-body correlations and non-adiabatic ultrafast dynamics involving electron-nuclear coupling. To enable multidimensional and real-time observation of the three-dimensional momenta of both electrons and ions during photoionization, the attosecond interferometry has been integrated into electron-ion coincidence systems. In this study, we utilize an attosecond coincidence interferometer that combines an attosecond pump-infrared femtosecond probe scheme with cold target recoil ion momentum spectroscopy. The apparatus enables attosecond-time-resolved momentum imaging of all charged fragments in atomic and molecular systems, thereby providing deeper insights into the dynamics of photoionization. We also highlight the recent groundbreaking applications and advances of attosecond coincidence interferometer in studying photoionization dynamics in atoms, molecules, and more complex systems.
  • 图 1  阿秒干涉仪示意图. 相位锁定的XUV阿秒脉冲串与NIR脉冲被聚焦到待测样品上, 光电离产生了离子和电子, 其动量及动能随泵浦-探测延迟的变化关系被测量记录. 左上角插图展示了光电离过程中边带(sideband, SB)电子的能级

    Fig. 1.  Schematic diagram of attosecond interferometry. The phase stabilized extreme-ultraviolet attosecond pulse train and near infrared pulse are focused onto the targets, generating the ions and electrons by photoionizing, of which the momentum and kinetic energy are measured as a function of the pump-probe delays. The inset in the left corner shows the energy diagram of the sideband (SB) electron generation.

    图 2  归一化的原子相移分布(单位: π)随光电子发射角的变化关系. 研究对象分别为(a) He原子, (b) Ne原子, (c) Ar原子. 每组图片从左至右依次对应偏振调控角为0°、20°、54.7°、90°, 三角(方形、圆形)符号与实线分别表示实验与理论结果, 实验误差棒代表标准偏差, 阴影区域标示拟合误差范围, 线色权重由光电子角分布产量决定. 图片改编自文献[49]

    Fig. 2.  The normalized atomic phase shift distributions (in units of πradians) as a function of the photoelectron emission angle of (a) helium, (b) neon, (c) argon. Each column includes the four situations with the skew-angle of 0°, 20°, 54.7° and 90° correspondingly. The triangles (squares/dots) and solid lines show the experimental and theoretical results, respectively. The error bars in the experimental results represent the standard deviation. The shaded area indicates the fitting error uncertainty and the line colors are weighted by the yield of the photoelectron angular distribution. Figure adapted from ref. [49].

    图 3  N2O与H2O分子的光电离时延. (a) N2O分子的阿秒干涉测量; (b) 实验测得的从N2O分子HOMO-1与HOMO轨道移出的电子光发射时延差值; (c) 同(b), 但研究对象为H2O分子; (d, e) 理论计算的光电离时延; (f) 与N2O阳离子A态相关的σ对称性形状共振(光子能量范围25—30 eV). 图片改编自文献[12]

    Fig. 3.  Molecular photoionization time delays in N2O and H2O. (a) Attosecond interferometry of N2O molecules; (b) Measured photoemission time delay differences between electrons removed from HOMO-1 and HOMO of N2O molecule; (c) Same as (b) but for H2O molecule; (d, e) Calculated photoionization time delays; (f) Shape resonance of σ symmetry in the photon-energy range of 25–30 eV associated with the A state of the N2O cation. Figure adapted from ref. [12].

    图 4  N2分子的阿秒光发射时延. (a) $ v'=0 $振动态下$ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $态与$ {\rm{A}}^2\Pi^+_{{\rm{u}}} $态的时延差值; (b) $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $态的光电离截面; (c) $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $态中$ v'=1 $与$ v'=0 $振动态的时延差值; (d) $ {\rm{A}}^2\Pi^+_{{\rm{u}}} $态中$ v'=1 $与$ v'=0 $振动态的时延差值. 图中实线空心圆圈表示理论结果, 虚线空心圆圈表示实验结果. 图改编自文献[13]

    Fig. 4.  Attosecond photoemission time delays of N2 molecules. (a) Time delay difference between $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $ and A state for $ v'=0 $; (b) Photoionization cross section of the $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $ state; (c) Time delay difference between $ v'=1 $ and $ v'=0 $ for $ {\rm{X}}^2\Sigma^+_{{\rm{g}}} $ state; (d) Same as (c) but for $ {\rm{A}}^2\Pi^+_{{\rm{u}}} $ state. The open circles with solid line represent theoretical results and the experimental results are highlighted by the dashed line. Figure adapted from ref. [13].

    图 5  CH4的阿秒光电子谱. (a)理论计算与(b)实验测量的CH4光电子能谱$( E_{{\rm{e}}} )$与$ {\rm{CH^+}} $碎片符合信号随阿秒脉冲串-IR脉冲间的时延的变化; (c)为(b)中阿秒光电子谱的傅里叶变换振幅; (d)为(b)中阿秒光电子谱在$ 2\omega_{{\rm{NIR}}} $频率处的归一化振荡振幅(橙色实线)与相位(蓝色虚线), 彩色圆点为拟合值. (e—h)同(a—d), 但研究对象为CD4. (i—l)和(m—p)分别展示CH4与CD4分子中对应$( {\rm{CH_3^++H}} )$和$( {\rm{CD_3^++D}} )$碎片的符合光电子谱, 其中$ E_{{\rm{sum}}} = E_{{\rm{e}}}+E_{{\rm{mol}}} $$( E_{{\rm{mol}}} $为分子产生的阳离子动能). 图片改编自文献[54]

    Fig. 5.  Attosecond photoelectron spectroscopy of CH4. (a) Theoretically calculated and (b) experimentally measured photoelectron spectrum $( E_{{\rm{e}}} )$ of CH4 in coincidence with $ {\rm{CH}}^+ $ as a function of attosecond pulse train-IR delay; (c) Fourier-transform amplitude of the attosecond photoelectron spectra in (b); (d) Normalized oscillation amplitude (orange solid line) and phase (navy dashed line) at $ 2\omega_{\rm{{NIR}}} $ of the attosecond photoelectron spectra in (b), and the fitted results are shown as colored circles. (e–h) Same as (a–d) but for CD4. (i–l) and (m–p) show the photoelectron spectra of CH4 and CD4 in coincidence with and ions, respectively, where $ E_{\rm{{sum}}} = E_{{\rm{e}}}+E_{\rm{{mol}}} $, with $ E_{\rm{{mol}}} $ being the kinetic energy of the molecular cation. Figure adapted from ref. [54].

    图 6  实验室坐标系的CF4分子光电离时延. (a) 实验测得的从$ 1{\rm{t}}_1 $轨道移出电子的光电离时延; (b) 实验测得的从$ 4{\rm{t}}_2 $轨道移出电子的光电离时延; (c) $ 1 t_1 $ HOMO轨道的三维波函数(左图)与共振能量处$ {\rm{t}}_2 $对称性偶极激发波函数(右图); (d) $ 4{\rm{t}}_2 $ HOMO轨道的三维波函数(左图)与共振能量处$ {\rm{a}}_1 $对称性偶极激发波函数(右图). 图片改编自文献[22]

    Fig. 6.  Laboratory-frame photoionization time delays of CF4 molecules. Experimentally measured photoionization time delays of the electron removal from $ 1{\rm{t}}_1 $ (a) and $ 4{\rm{t}}_2 $ (b); (c) Three-dimensional orbital wave functions for the $ 1{\rm{t}}_1 $ HOMO (left) and the $ {\rm{t}}_2 $ dipole-prepared wave function at the resonance energy (right); (d) Same as (c), but for $ 4{\rm{t}}_2 $ HOMO-1 and its dipole-prepared resonant $ {\rm{a}}_1 $ wave function. Figure adapted from ref. [22].

    图 7  一氧化氮分子的分子坐标系光电离时延. 蓝色与橙色圆点分别表示朝氮(N)原子端和氧(O)原子端发射的光电子时延; 青色圆点表示偶极平面内各方向偏振平均的角度分辨时延. 图改编自文献[23]

    Fig. 7.  Molecular-frame photoionization time delay of nitric oxide molecules. The blue and orange dots indicate the photoelectron emitted to the N atom and O atom sites, respectively. The cyan dots show the angle-resolved time delays with the light polarization averaged over all directions in the dipole plane. Figure adapted from ref. [23].

    图 8  水团簇电离碎裂示意图(上图)及团簇质谱, 其中$ r_{{\rm{ion}}} $表示探测器实测碎裂碎片分布半径. 图片改编自文献[26]

    Fig. 8.  Illustration of the fragmentation of small water clusters following ionization (top) and mass spectrum of the water clusters, $ r_{ion} $ is the measured fragmentation radius at the detector. Figure adapted from ref. [26].

    图 9  尺寸分辨的水团簇$ 1{\rm{b}}_1 $电子能带光电离时延: (a) 边带12处; (b) 边带14处. (b)中红点标示液相测量相对时延值[18]. 图片改编自文献[26]

    Fig. 9.  Cluster size resolved water clusters photoionization time delays of the $ 1{\rm{b}}_1 $ electron band at (a) SB12 and (b) SB14. The red dot in (b) shows the relative delay obtained in the liquid-phase measurements [18]. Figure adapted from ref. [26].

  • [1]

    Zewail A 2000 J. Phys. Chem. A 104 5660Google Scholar

    [2]

    Ferray M, L’Huillier A, Li X, Lompre L, Mainfray G, Manus C 1988 J. Phys. B 21 L31Google Scholar

    [3]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [4]

    Hentschel M, Kienberger R, Spielmann C, Reider G, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [5]

    Paul P, Toma E, Breger P, Mullot G, Augé F, Balcou P, Muller H, Agostini P 2001 Science 292 1689Google Scholar

    [6]

    Mairesse Y, de Bohan A, Frasinski L, Merdji H, Dinu L, Monchicourt P, Breger P, Kovacev M, Taïeb R, Carré B, Muller H, Agostini P, Salières P 2003 Science 302 1540Google Scholar

    [7]

    Itatani J, Quéré F, Yudin G, Ivanov M, Krausz F, Corkum P 2002 Phys. Rev. Lett. 88 173903Google Scholar

    [8]

    Goulielmakis E, Uiberacker M, Kienberger R, Baltuska A, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Science 305 1267Google Scholar

    [9]

    Guenot D, Kroon D, Balogh E, Larsen E W, Kotur M, Miranda M, Fordell T, Johnsson P, Mauritsson J, Gisselbrecht M, Varju K, Arnold C L, Carette T, Kheifets A S, Lindroth E, L’Huillier A, Dahlstrom J M 2014 J. Phys. B 47 245602Google Scholar

    [10]

    Palatchi C, Dahlstrom J M, Kheifets A S, Ivanov I A, Canaday D M, Agostini P, DiMauro L F 2014 J. Phys. B 47 245003Google Scholar

    [11]

    Alexandridi C, Platzer D, Barreau L, Busto D, Zhong S, Turconi M, Neoricic L, Laurell H, Arnold C L, Borot A, Hergott J F, Tcherbakoff O, Lejman M, Gisselbrecht M, Lindroth E, L’Huillier A, Dahlstrom J M, Salieres P 2021 Phys. Rev. Res. 3 L012012Google Scholar

    [12]

    Huppert M, Jordan I, Baykusheva D, von Conta A, Wörner H J 2016 Phys. Rev. Lett. 117 093001Google Scholar

    [13]

    Nandi S, Plesiat E, Zhong S, Palacios A, Busto D, Isinger M, Neoricic L, Arnold C L, Squibb R J, Feifel R, Decleva P, L’Huillier A, Martin F, Gisselbrecht M 2020 Sci. Adv. 6 eaba7762Google Scholar

    [14]

    Beaulieu S, Comby A, Clergerie A, Caillat J, Descamps D, Dudovich N, Fabre B, Geneaux R, Legare F, Petit S, Pons B, Porat G, Ruchon T, Taieb R, Blanchet V, Mairesse Y 2017 Science 358 1288Google Scholar

    [15]

    Cavalieri A L, Mueller N, Uphues T, Yakovlev V S, Baltuska A, Horvath B, Schmidt B, Bluemel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029Google Scholar

    [16]

    Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U 2016 Science 353 916Google Scholar

    [17]

    Tao Z, Chen C, Szilvasi T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62Google Scholar

    [18]

    Jordan I, Huppert M, Rattenbacher D, Peper M, Jelovina D, Perry C, von Conta A, Schild A, Woerner H J 2020 Science 369 974Google Scholar

    [19]

    Klunder K, Dahlstrom J M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taieb R, L’Huillier A 2011 Phys. Rev. Lett. 106 143002Google Scholar

    [20]

    Gong X, Lin C, He F, Song Q, Lin K, Ji Q, Zhang W, Ma J, Lu P, Liu Y, Zeng H, Yang W, Wu J 2017 Phys. Rev. Lett. 118 143203Google Scholar

    [21]

    Isinger M, Squibb R J, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C L, Miranda M, Dahlstrom J M, Lindroth E, Feifel R, Gisselbrecht M, L’Huillier A 2017 Science 358 893Google Scholar

    [22]

    Heck S, Baykusheva D, Han M, Ji J B, Perry C, Gong X, Woerner H J 2021 Sci. Adv. 7 eabj8121Google Scholar

    [23]

    Gong X, Jiang W, Tong J, Qiang J, Lu P, Ni H, Lucchese R, Ueda K, Wu J 2022 Phys. Rev. X 12 011002

    [24]

    Ossiander M, Siegrist F, Shirvanyan V, Pazourek R, Sommer A, Latka T, Guggenmos A, Nagele S, Feist J, Burgdoerfer J, Kienberger R, Schultze M 2017 Nat. Phys. 13 280Google Scholar

    [25]

    Vos J, Cattaneo L, Patchkovskii S, Zimmermann T, Cirelli C, Lucchini M, Kheifets A, Landsman A S, Keller U 2018 Science 360 1326Google Scholar

    [26]

    Gong X, Heck S, Jelovina D, Perry C, Zinchenko K, Lucchese R, Woerner H J 2022 Nature 609 507Google Scholar

    [27]

    Ullrich J, Moshammer R, Dorner R, Jagutzki O, Mergel V, SchmidtBocking H, Spielberger L 1997 J. Phys. B 30 2917Google Scholar

    [28]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [29]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [30]

    Sandhu A S, Gagnon E, Santra R, Sharma V, Li W, Ho P, Ranitovic P, Cocke C L, Murnane M M, Kapteyn H C 2008 Science 322 1081Google Scholar

    [31]

    Ranitovic P, Hogle C W, Riviere P, Palacios A, Tong X M, Toshima N, Gonzalez-Castrillo A, Martin L, Martin F, Murnane M M, Kapteyn H 2014 Proc. Natl. Acad. Sci. U.S.A. 111 912Google Scholar

    [32]

    Sabbar M, Heuser S, Boge R, Lucchini M, Gallmann L, Cirelli C, Keller U 2014 Rev. Sci. Instrum. 85 103113Google Scholar

    [33]

    Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schoeffler M, Muller H G, Doerner R, Keller U 2008 Nat. Phys. 4 565Google Scholar

    [34]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Doerner R, Muller H G, Buettiker M, Keller U 2008 Science 322 1525Google Scholar

    [35]

    Chini M, Mashiko H, Wang H, Chen S, Yun C, Scott S, Gilbertson S, Chang Z 2009 Opt. Express 17 21459Google Scholar

    [36]

    Wigner E 1955 Phys. Rev. 98 145Google Scholar

    [37]

    Smith F 1960 Phys. Rev. 118 349Google Scholar

    [38]

    Dahlstrom J M, L’Huillier A, Maquet A 2012 J. Phys. B 45 183001Google Scholar

    [39]

    Baykusheva D, Woerner H J 2017 J. Chem. Phys. 146 124306Google Scholar

    [40]

    Jordan I, Woerner H J 2018 J. Opt. 20 024013Google Scholar

    [41]

    Gong X, Jordan I, Huppert M, Heck S, Baykusheva D, Jelovina D, Schild A, Wörner H J 2022 Chimia 76 520Google Scholar

    [42]

    Heuser S, Galan A J, Cirelli C, Marante C, Sabbar M, Boge R, Lucchini M, Gallmann L, Ivanov I, Kheifets A S, Dahlstrom J M, Lindroth E, Argenti L, Martin F, Keller U 2016 Phys. Rev. A 94 063409Google Scholar

    [43]

    You D, Ueda K, Gryzlova E V, Grum-Grzhimailo A N, Popova M M, Staroselskaya E I, Tugs O, Orimo Y, Sato T, Ishikawa K L, Carpeggiani P A, Csizmadia T, Fule M, Sansone G, Maroju P K, D’Elia A, Mazza T, Meyer M, Callegari C, Di Fraia M, Plekan O, Richter R, Giannessi L, Allaria E, De Ninno G, Trovo M, Badano L, Diviacco B, Gaio G, Gauthier D, Mirian N, Penco G, Ribic P R, Spampinati S, Spezzani C, Prince K C 2020 Phys. Rev. X 10 031070

    [44]

    Busto D, Vinbladh J, Zhong S, Isinger M, Nandi S, Maclot S, Johnsson P, Gisselbrecht M, L’Huillier A, Lindroth E, Dahlstrom J M 2019 Phys. Rev. Lett. 123 133201Google Scholar

    [45]

    Leahy D, Reid K, Zare R 1991 J. Chem. Phys. 95 1757Google Scholar

    [46]

    O’Keeffe P, López-Martens R, Mauritsson J, Johansson A, L’Huillier A, Véniard V, Taïeb R, Maquet A, Meyer M 2004 Phys. Rev. A 69 051401Google Scholar

    [47]

    Meyer M, Cubaynes D, Glijer D, Dardis J, Hayden P, Hough P, Richardson V, Kennedy E T, Costello J T, Radcliffe P, Duesterer S, Azima A, Li W B, Redlin H, Feldhaus J, Taieb R, Maquet A, GrumGrzhimailo A N, Gryzlova E V, Strakhova S I 2008 Phys. Rev. Lett. 101 193002Google Scholar

    [48]

    Reid K 2003 Annu. Rev. Phys. Chem. 54 397Google Scholar

    [49]

    Jiang W, Armstrong G S J, Tong J, Xu Y, Zuo Z, Qiang J, Lu P, Clarke D D A, Benda J, Fleischer A, Ni H, Ueda K, van der Hart H W, Brown A C, Gong X, Wu J 2022 Nat. Commun. 13 5072Google Scholar

    [50]

    Kheifets A S, Xu Z 2023 J. Phys. B 56 155601Google Scholar

    [51]

    Kheifets A S 2023 J. Phys. B 56 022001Google Scholar

    [52]

    Ji J B, Ueda K, Han M, Wörner H J 2024 J. Phys. B 57 235601Google Scholar

    [53]

    Dahlstrom J M, Guenot D, Klunder K, Gisselbrecht M, Mauritsson J, L’Huillier A, Maquet A, Taieb R 2013 Chem. Phys. 414 53Google Scholar

    [54]

    Gong X, Plesiat E, Palacios A, Heck S, Martin F, Woerner H J 2023 Nat. Commun. 14 4402Google Scholar

    [55]

    Toma E, Muller H 2002 J. Phys. B 35 3435Google Scholar

    [56]

    Jiang W, Roantree L, Han L, Ji J, Xu Y, Zuo Z, Woerner H J, Ueda K, Brown A C, van der Hart H W, Gong X, Wu J 2025 Nat. Commun. 16 381Google Scholar

    [57]

    Mondal T, Varandas A J C 2014 J. Chem. Theory Comput. 10 3606Google Scholar

    [58]

    Li M, Zhang M, Vendrell O, Guo Z, Zhu Q, Gao X, Cao L, Guo K, Su Q, Cao W, Luo S, Yan J, Zhou Y, Liu Y, Lu P, Li Z 2021 Nat. Commun. 12 4233Google Scholar

    [59]

    Baker S, Robinson J, Haworth C, Teng H, Smith R, Chirila C, Lein M, Tisch J, Marangos J 2006 Science 312 424Google Scholar

    [60]

    Ertel D, Busto D, Makos I, Schmoll M, Benda J, Ahmadi H, Moioli M, Frassetto F, Poletto L, Schroeter C D, Pfeifer T, Moshammer R, Masin Z, Patchkovskii S, Sansone G 2023 Sci. Adv. 9 eadh7747Google Scholar

    [61]

    Vacher M, Bearpark M J, Robb M A, Malhado J P 2017 Phys. Rev. Lett. 118 083001Google Scholar

    [62]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martin F, Keller U 2018 Nat. Phys. 14 733Google Scholar

    [63]

    Kraus P M, Baykusheva D, Woerner H J 2014 Phys. Rev. Lett. 113 023001Google Scholar

    [64]

    Loh Z H, Doumy G, Arnold C, Kjellsson L, Southworth S H, Al Haddad A, Kumagai Y, Tu M F, Ho P J, March A M, Schaller R D, Yusof M S B M, Debnath T, Simon M, Welsch R, Inhester L, Khalili K, Nanda K, Krylov A I, Moeller S, Coslovich G, Koralek J, Minitti M P, Schlotter W F, Rubensson J E, Santra R, Young L 2020 Science 367 179Google Scholar

    [65]

    Schild A, Peper M, Perry C, Rattenbacher D, Woerner H J 2020 J. Phys. Chem. Lett. 11 1128Google Scholar

    [66]

    Yang J, Dettori R, Nunes J P F, List N H, Biasin E, Centurion M, Chen Z, Cordones A A, Deponte D P, Heinz T F, Kozina M E, Ledbetter K, Lin M F, Lindenberg A M, Mo M, Nilsson A, Shen X, Wolf T J A, Donadio D, Gaffney K J, Martinez T J, Wang X 2021 Nature 596 531Google Scholar

    [67]

    Ismail I, Ferte A, Penent F, Guillemin R, Peng D, Marchenko T, Travnikova O, Inhester L, Taieb R, Verma A, Velasquez N, Kukk E, Trinter F, Koulentianos D, Mazza T, Baumann T M, Rivas D E, Ovcharenko Y, Boll R, Dold S, De Fanis A, Ilchen M, Meyer M, Goldsztejn G, Li K, Doumy G, Young L, Sansone G, Doerner R, Piancastelli M N, Carniato S, Bozek J D, Puetner R, Simon M 2023 Phys. Rev. Lett. 131 253201Google Scholar

    [68]

    Schnorr K, Belina M, Augustin S, Lindenblatt H, Liu Y, Meister S, Pfeifer T, Schmid G, Treusch R, Trost F, Slavilek P, Moshammer R 2023 Sci. Adv. 9 eadg7864Google Scholar

    [69]

    Anderson P 1958 Phys. Rev. 109 1492Google Scholar

    [70]

    Hunt P, Sprik M, Vuilleumier R 2003 Chem. Phys. Lett. 376 68Google Scholar

    [71]

    Prendergast D, Grossman J, Galli G 2005 J. Chem. Phys. 123 014501Google Scholar

    [72]

    Svoboda V, Michiels R, LaForge A C, Med J, Stienkemeier F, Slavicek P, Wörner H J 2020 Sci. Adv. 6 eaaz0385Google Scholar

  • [1] 徐卉琳, 黄程, 魏政荣. 利用飞秒泵浦-受激亏蚀-探测瞬态吸收光谱调控1122C分子超快光异构化动力学. 物理学报, doi: 10.7498/aps.74.20250909
    [2] 张一晨, 丁南南, 李加林, 付玉喜. 阿秒瞬态吸收光谱: 揭示电子动力学的超快光学探针. 物理学报, doi: 10.7498/aps.74.20250546
    [3] 方振, 余游, 赵秋烨, 张昱冬, 王治强, 张祖兴. 基于泵浦强度调制的超快光纤激光器中孤子分子光谱脉动动力学研究. 物理学报, doi: 10.7498/aps.73.20231030
    [4] 贾韫哲, 孟胜. 光激发下水体系的超快动力学. 物理学报, doi: 10.7498/aps.73.20240047
    [5] 杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华. 超快自旋动力学: 从飞秒磁学到阿秒磁学. 物理学报, doi: 10.7498/aps.73.20240646
    [6] 陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋. 阿秒脉冲的发展及其在原子分子超快动力学中的应用. 物理学报, doi: 10.7498/aps.72.20222436
    [7] 徐一丹, 姜雯昱, 童继红, 韩露露, 左子潭, 许理明, 宫晓春, 吴健. NO分子形状共振阿秒动力学精密测量. 物理学报, doi: 10.7498/aps.71.20221735
    [8] 靳亚晴, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚. 门控下InGaAs/InP单光子探测器用于符合测量的时域滤波特性研究. 物理学报, doi: 10.7498/aps.70.20201648
    [9] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究. 物理学报, doi: 10.7498/aps.69.20200397
    [10] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置. 物理学报, doi: 10.7498/aps.69.20201035
    [11] 李永明, 王亮, 陈想林, 阮念寿, 赵德山. 252Cf自发裂变中子发射率符合测量的回归分析. 物理学报, doi: 10.7498/aps.67.20181073
    [12] 贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋. 用于激光加速质子参数表征的带电粒子活化测谱技术. 物理学报, doi: 10.7498/aps.66.205201
    [13] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新. 双色场控制与测量原子分子超快电子动力学过程的研究进展. 物理学报, doi: 10.7498/aps.65.223206
    [14] 张博, 张春峰, 李希友, 王睿, 肖敏. 单线态分裂的超快光谱学研究. 物理学报, doi: 10.7498/aps.64.094210
    [15] 徐悦, 金钻明, 李高芳, 张郑兵, 林贤, 马国宏, 程振祥. 锰酸钇薄膜中Mn3+离子dd跃迁的超快光谱学研究. 物理学报, doi: 10.7498/aps.61.177802
    [16] 王文芳, 陈科, 邬静达, 文锦辉, 赖天树. 长寿命吸收过程对超快动力学过程测量的影响. 物理学报, doi: 10.7498/aps.60.117802
    [17] 唐小锋, 牛铭理, 周晓国, 刘世林. 基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究. 物理学报, doi: 10.7498/aps.59.6940
    [18] 马海强, 李林霞, 王素梅, 吴张斌, 焦荣珍. 一种全光纤型观测光波粒二象性的方法. 物理学报, doi: 10.7498/aps.59.75
    [19] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布. 物理学报, doi: 10.7498/aps.54.2653
    [20] 常君弢, 吴令安. 单光子探测器量子效率的绝对自身标定方法. 物理学报, doi: 10.7498/aps.52.1132
计量
  • 文章访问数:  174
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-28
  • 修回日期:  2025-10-23
  • 上网日期:  2025-10-31

/

返回文章
返回