搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阿秒符合干涉仪与原子分子及团簇体系阿秒光电子电离延迟测量

王旭涵 欧显彬 宫晓春

引用本文:
Citation:

阿秒符合干涉仪与原子分子及团簇体系阿秒光电子电离延迟测量

王旭涵, 欧显彬, 宫晓春

Attosecond coincidence interferometer and measurement of the photoelectron ionization time delay in atomic, molecular and cluster systems

WANG Xuhan, OU Xianbin, GONG Xiaochun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 孤立原子、分子及复杂体系中电子本征时间尺度演化规律及调控机理,一直是原子分子物理基础科研与量子材料前沿应用十分重要的科学问题。近二十年阿秒光脉冲产生以及阿秒度量谱学的发展,为这一科学问题的探索带来新的契机和挑战。传统飞行时间谱仪、速度动量成像谱仪等探测方式已能在极高时间能量分辨率下揭示阿秒时间尺度光电离电子发射过程中的阿秒散射相移过程,然而在多体符合测量、三维动量关联方面存在局限性,这极大限制了对多电子关联、电子-核耦合非绝热超快动力学等物理过程的探索。为实现对光电离过程中电子、离子三维动量的多维实时观测,电子-离子符合测量系统中引入了阿秒干涉仪,发展出符合干涉测量系统。本文介绍了一种结合阿秒脉冲泵浦-红外飞秒脉冲探测和冷靶反冲离子动量谱仪符合测量的阿秒符合干涉仪,该装置能够对原子分子体系中所有带电粒子碎片的动量进行阿秒时间分辨成像,从而深入探究光电离过程的动力学机制;并着重介绍近年来阿秒符合干涉仪在原子、分子以及更复杂体系的光电离动力学研究中的应用和取得的突破性进展。
    The evolution mechanism of electrons in isolated atoms, molecules and complex systems on the natural time-scale have long been the fundamental question in atomic and molecular physics, with significant implications for the applications of quantum materials. Over the past two decades, the development of attosecond light pulses and attosecond metrology has opened new opportunities—with posing new challenges—for investigating the electronic dynamics. Conventional detection techniques, such as timeof-flight and velocity map imaging spectrometers, have enabled the study of attosecond scattering phase shifts during photoemission and ionization processes with extremely high temporal and energy resolution. However, the limitations in multi-particle coincidence detection and three-dimensional momentum correlation have restricted deeper exploration of many-body correlations and non-adiabatic ultrafast dynamics involving electron-nuclear coupling. To enable multidimensional and real-time observation of the threedimensional momenta of both electrons and ions during photoionization, the attosecond interferometry has been integrated into electron-ion coincidence systems. In this paper we introduce the attosecond coincidence interferometer that combines an attosecond pump-infrared femtosecond probe scheme with cold target recoil ion momentum spectroscopy. The apparatus allows attosecond-time-resolved momentum imaging of all charged fragments in atomic and molecular systems, thereby providing deeper insights into the dynamics of photoionization. We also highlight the recent groundbreaking applications and advances of attosecond coincidence interferometer in the research of photoionization dynamics in atoms, molecules, and more complex systems.
  • [1]

    Zewail A 2000 J. Phys. Chem. A 104 5660

    [2]

    Ferray M, L'Huillier A, Li X, Lompre L, Mainfray G, Manus C 1988 J. Phys. B 21 L31

    [3]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66

    [4]

    Hentschel M, Kienberger R, Spielmann C, Reider G, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [5]

    Paul P, Toma E, Breger P, Mullot G, Augé F, Balcou P, Muller H, Agostini P 2001 Science 292 1689

    [6]

    Mairesse Y, de Bohan A, Frasinski L, Merdji H, Dinu L, Monchicourt P, Breger P, Kovacev M, Taïeb R, Carré B, Muller H, Agostini P, Salières P 2003 Science 302 1540

    [7]

    Itatani J, Quéré F, Yudin G, Ivanov M, Krausz F, Corkum P 2002 Phys. Rev. Lett. 88 173903

    [8]

    Goulielmakis E, Uiberacker M, Kienberger R, Baltuska A, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Drescher M, Krausz F 2004 Science 305 1267

    [9]

    Guenot D, Kroon D, Balogh E, Larsen E W, Kotur M, Miranda M, Fordell T, Johnsson P, Mauritsson J, Gisselbrecht M, Varju K, Arnold C L, Carette T, Kheifets A S, Lindroth E, L'Huillier A, Dahlstrom J M 2014 J. Phys. B 47 245602

    [10]

    Palatchi C, Dahlstrom J M, Kheifets A S, Ivanov I A, Canaday D M, Agostini P, DiMauro L F 2014 J. Phys. B 47 245003

    [11]

    Alexandridi C, Platzer D, Barreau L, Busto D, Zhong S, Turconi M, Neoricic L, Laurell H, Arnold C L, Borot A, Hergott J F, Tcherbakoff O, Lejman M, Gisselbrecht M, Lindroth E, L'Huillier A, Dahlstrom J M, Salieres P 2021 Phys. Rev. Res. 3 L012012

    [12]

    Huppert M, Jordan I, Baykusheva D, von Conta A, Wörner H J 2016 Phys. Rev. Lett. 117 093001

    [13]

    Nandi S, Plesiat E, Zhong S, Palacios A, Busto D, Isinger M, Neoricic L, Arnold C L, Squibb R J, Feifel R, Decleva P, L'Huillier A, Martin F, Gisselbrecht M 2020 Sci. Adv. 6 eaba7762

    [14]

    Beaulieu S, Comby A, Clergerie A, Caillat J, Descamps D, Dudovich N, Fabre B, Geneaux R, Legare F, Petit S, Pons B, Porat G, Ruchon T, Taieb R, Blanchet V, Mairesse Y 2017 Science 358 1288

    [15]

    Cavalieri A L, Mueller N, Uphues T, Yakovlev V S, Baltuska A, Horvath B, Schmidt B, Bluemel L, Holzwarth R, Hendel S, Drescher M, Kleineberg U, Echenique P M, Kienberger R, Krausz F, Heinzmann U 2007 Nature 449 1029

    [16]

    Lucchini M, Sato S A, Ludwig A, Herrmann J, Volkov M, Kasmi L, Shinohara Y, Yabana K, Gallmann L, Keller U 2016 Science 353 916

    [17]

    Tao Z, Chen C, Szilvasi T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62

    [18]

    Jordan I, Huppert M, Rattenbacher D, Peper M, Jelovina D, Perry C, von Conta A, Schild A, Woerner H J 2020 Science 369 974

    [19]

    Klunder K, Dahlstrom J M, Gisselbrecht M, Fordell T, Swoboda M, Guenot D, Johnsson P, Caillat J, Mauritsson J, Maquet A, Taieb R, L'Huillier A 2011 Phys. Rev. Lett. 106 143002

    [20]

    Gong X, Lin C, He F, Song Q, Lin K, Ji Q, Zhang W, Ma J, Lu P, Liu Y, Zeng H, Yang W, Wu J 2017 Phys. Rev. Lett. 118 143203

    [21]

    Isinger M, Squibb R J, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold C L, Miranda M, Dahlstrom J M, Lindroth E, Feifel R, Gisselbrecht M, L'Huillier A 2017 Science 358 893

    [22]

    Heck S, Baykusheva D, Han M, Ji J B, Perry C, Gong X, Woerner H J 2021 Sci. Adv. 7 eabj8121

    [23]

    Gong X, Jiang W, Tong J, Qiang J, Lu P, Ni H, Lucchese R, Ueda K, Wu J 2022 Phys. Rev. X 12 011002

    [24]

    Ossiander M, Siegrist F, Shirvanyan V, Pazourek R, Sommer A, Latka T, Guggenmos A, Nagele S, Feist J, Burgdoerfer J, Kienberger R, Schultze M 2017 Nat. Phys. 13 280

    [25]

    Vos J, Cattaneo L, Patchkovskii S, Zimmermann T, Cirelli C, Lucchini M, Kheifets A, Landsman A S, Keller U 2018 Science 360 1326

    [26]

    Gong X, Heck S, Jelovina D, Perry C, Zinchenko K, Lucchese R, Woerner H J 2022 Nature 609 507

    [27]

    Ullrich J, Moshammer R, Dorner R, Jagutzki O, Mergel V, SchmidtBocking H, Spielberger L 1997 J. Phys. B 30 2917

    [28]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463

    [29]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95

    [30]

    Sandhu A S, Gagnon E, Santra R, Sharma V, Li W, Ho P, Ranitovic P, Cocke C L, Murnane M M, Kapteyn H C 2008 Science 322 1081

    [31]

    Ranitovic P, Hogle C W, Riviere P, Palacios A, Tong X M, Toshima N, Gonzalez-Castrillo A, Martin L, Martin F, Murnane M M, Kapteyn H 2014 Proc. Natl. Acad. Sci. U.S.A. 111 912

    [32]

    Sabbar M, Heuser S, Boge R, Lucchini M, Gallmann L, Cirelli C, Keller U 2014 Rev. Sci. Instrum. 85 103113

    [33]

    Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schoeffler M, Muller H G, Doerner R, Keller U 2008 Nat. Phys. 4 565

    [34]

    Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Doerner R, Muller H G, Buettiker M, Keller U 2008 Science 322 1525

    [35]

    Chini M, Mashiko H, Wang H, Chen S, Yun C, Scott S, Gilbertson S, Chang Z 2009 Opt. Express 17 21459

    [36]

    Wigner E 1955 Phys. Rev. 98 145

    [37]

    Smith F 1960 Phys. Rev. 118 349

    [38]

    Dahlstrom J M, L'Huillier A, Maquet A 2012 J. Phys. B 45 183001

    [39]

    Baykusheva D, Woerner H J 2017 J. Chem. Phys. 146 124306

    [40]

    Jordan I, Woerner H J 2018 J. Opt. 20 024013

    [41]

    Gong X, Jordan I, Huppert M, Heck S, Baykusheva D, Jelovina D, Schild A, Wörner H J 2022 Chimia 76 520

    [42]

    Heuser S, Galan A J, Cirelli C, Marante C, Sabbar M, Boge R, Lucchini M, Gallmann L, Ivanov I, Kheifets A S, Dahlstrom J M, Lindroth E, Argenti L, Martin F, Keller U 2016 Phys. Rev. A 94 063409

    [43]

    You D, Ueda K, Gryzlova E V, Grum-Grzhimailo A N, Popova M M, Staroselskaya E I, Tugs O, Orimo Y, Sato T, Ishikawa K L, Carpeggiani P A, Csizmadia T, Fule M, Sansone G, Maroju P K, D'Elia A, Mazza T, Meyer M, Callegari C, Di Fraia M, Plekan O, Richter R, Giannessi L, Allaria E, De Ninno G, Trovo M, Badano L, Diviacco B, Gaio G, Gauthier D, Mirian N, Penco G, Ribic P R, Spampinati S, Spezzani C, Prince K C 2020 Phys. Rev. X 10 031070

    [44]

    Busto D, Vinbladh J, Zhong S, Isinger M, Nandi S, Maclot S, Johnsson P, Gisselbrecht M, L'Huillier A, Lindroth E, Dahlstrom J M 2019 Phys. Rev. Lett. 123 133201

    [45]

    Leahy D, Reid K, Zare R 1991 J. Chem. Phys. 95 1757

    [46]

    O'Keeffe P, López-Martens R, Mauritsson J, Johansson A, L'Huillier A, Véniard V, Taïeb R, Maquet A, Meyer M 2004 Phys. Rev. A 69 051401

    [47]

    Meyer M, Cubaynes D, Glijer D, Dardis J, Hayden P, Hough P, Richardson V, Kennedy E T, Costello J T, Radcliffe P, Duesterer S, Azima A, Li W B, Redlin H, Feldhaus J, Taieb R, Maquet A, GrumGrzhimailo A N, Gryzlova E V, Strakhova S I 2008 Phys. Rev. Lett. 101 193002

    [48]

    Reid K 2003 Annu. Rev. Phys. Chem. 54 397

    [49]

    Jiang W, Armstrong G S J, Tong J, Xu Y, Zuo Z, Qiang J, Lu P, Clarke D D A, Benda J, Fleischer A, Ni H, Ueda K, van der Hart H W, Brown A C, Gong X, Wu J 2022 Nat. Commun. 13 5072

    [50]

    Kheifets A S, Xu Z 2023 J. Phys. B 56 155601

    [51]

    Kheifets A S 2023 J. Phys. B 56 022001

    [52]

    Ji J B, Ueda K, Han M, Wörner H J 2024 J. Phys. B 57 235601

    [53]

    Dahlstrom J M, Guenot D, Klunder K, Gisselbrecht M, Mauritsson J, L'Huillier A, Maquet A, Taieb R 2013 Chem. Phys. 414 53

    [54]

    Gong X, Plesiat E, Palacios A, Heck S, Martin F, Woerner H J 2023 Nat. Commun. 14 4402

    [55]

    Toma E, Muller H 2002 J. Phys. B 35 3435

    [56]

    Jiang W, Roantree L, Han L, Ji J, Xu Y, Zuo Z, Woerner H J, Ueda K, Brown A C, van der Hart H W, Gong X, Wu J 2025 Nat. Commun. 16 381

    [57]

    Mondal T, Varandas A J C 2014 J. Chem. Theory Comput. 10 3606

    [58]

    Li M, Zhang M, Vendrell O, Guo Z, Zhu Q, Gao X, Cao L, Guo K, Su Q, Cao W, Luo S, Yan J, Zhou Y, Liu Y, Lu P, Li Z 2021 Nat. Commun. 12 4233

    [59]

    Baker S, Robinson J, Haworth C, Teng H, Smith R, Chirila C, Lein M, Tisch J, Marangos J 2006 Science 312 424

    [60]

    Ertel D, Busto D, Makos I, Schmoll M, Benda J, Ahmadi H, Moioli M, Frassetto F, Poletto L, Schroeter C D, Pfeifer T, Moshammer R, Masin Z, Patchkovskii S, Sansone G 2023 Sci. Adv. 9 eadh7747

    [61]

    Vacher M, Bearpark M J, Robb M A, Malhado J P 2017 Phys. Rev. Lett. 118 083001

    [62]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martin F, Keller U 2018 Nat. Phys. 14 733

    [63]

    Kraus P M, Baykusheva D, Woerner H J 2014 Phys. Rev. Lett. 113 023001

    [64]

    Loh Z H, Doumy G, Arnold C, Kjellsson L, Southworth S H, Al Haddad A, Kumagai Y, Tu M F, Ho P J, March A M, Schaller R D, Yusof M S B M, Debnath T, Simon M, Welsch R, Inhester L, Khalili K, Nanda K, Krylov A I, Moeller S, Coslovich G, Koralek J, Minitti M P, Schlotter W F, Rubensson J E, Santra R, Young L 2020 Science 367 179

    [65]

    Schild A, Peper M, Perry C, Rattenbacher D, Woerner H J 2020 J. Phys. Chem. Lett. 11 1128

    [66]

    Yang J, Dettori R, Nunes J P F, List N H, Biasin E, Centurion M, Chen Z, Cordones A A, Deponte D P, Heinz T F, Kozina M E, Ledbetter K, Lin M F, Lindenberg A M, Mo M, Nilsson A, Shen X, Wolf T J A, Donadio D, Gaffney K J, Martinez T J, Wang X 2021 Nature 596 531

    [67]

    Ismail I, Ferte A, Penent F, Guillemin R, Peng D, Marchenko T, Travnikova O, Inhester L, Taieb R, Verma A, Velasquez N, Kukk E, Trinter F, Koulentianos D, Mazza T, Baumann T M, Rivas D E, Ovcharenko Y, Boll R, Dold S, De Fanis A, Ilchen M, Meyer M, Goldsztejn G, Li K, Doumy G, Young L, Sansone G, Doerner R, Piancastelli M N, Carniato S, Bozek J D, Puetner R, Simon M 2023 Phys. Rev. Lett. 131 253201

    [68]

    Schnorr K, Belina M, Augustin S, Lindenblatt H, Liu Y, Meister S, Pfeifer T, Schmid G, Treusch R, Trost F, Slavilek P, Moshammer R 2023 Sci. Adv. 9 eadg7864

    [69]

    Anderson P 1958 Phys. Rev. 109 1492

    [70]

    Hunt P, Sprik M, Vuilleumier R 2003 Chem. Phys. Lett. 376 68

    [71]

    Prendergast D, Grossman J, Galli G 2005 J. Chem. Phys. 123 014501

    [72]

    Svoboda V, Michiels R, LaForge A C, Med J, Stienkemeier F, Slavicek P, Wörner H J 2020 Sci. Adv. 6 eaaz0385

  • [1] 徐卉琳, 黄程, 魏政荣. 利用飞秒泵浦-受激亏蚀-探测瞬态吸收光谱调控1122C分子超快光异构化动力学. 物理学报, doi: 10.7498/aps.74.20250909
    [2] 张一晨, 丁南南, 李加林, 付玉喜. 阿秒瞬态吸收光谱: 揭示电子动力学的超快光学探针. 物理学报, doi: 10.7498/aps.74.20250546
    [3] 方振, 余游, 赵秋烨, 张昱冬, 王治强, 张祖兴. 基于泵浦强度调制的超快光纤激光器中孤子分子光谱脉动动力学研究. 物理学报, doi: 10.7498/aps.73.20231030
    [4] 贾韫哲, 孟胜. 光激发下水体系的超快动力学. 物理学报, doi: 10.7498/aps.73.20240047
    [5] 杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华. 超快自旋动力学: 从飞秒磁学到阿秒磁学. 物理学报, doi: 10.7498/aps.73.20240646
    [6] 陶琛玉, 雷建廷, 余璇, 骆炎, 马新文, 张少锋. 阿秒脉冲的发展及其在原子分子超快动力学中的应用. 物理学报, doi: 10.7498/aps.72.20222436
    [7] 徐一丹, 姜雯昱, 童继红, 韩露露, 左子潭, 许理明, 宫晓春, 吴健. NO分子形状共振阿秒动力学精密测量. 物理学报, doi: 10.7498/aps.71.20221735
    [8] 靳亚晴, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚. 门控下InGaAs/InP单光子探测器用于符合测量的时域滤波特性研究. 物理学报, doi: 10.7498/aps.70.20201648
    [9] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究. 物理学报, doi: 10.7498/aps.69.20200397
    [10] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置. 物理学报, doi: 10.7498/aps.69.20201035
    [11] 李永明, 王亮, 陈想林, 阮念寿, 赵德山. 252Cf自发裂变中子发射率符合测量的回归分析. 物理学报, doi: 10.7498/aps.67.20181073
    [12] 贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋. 用于激光加速质子参数表征的带电粒子活化测谱技术. 物理学报, doi: 10.7498/aps.66.205201
    [13] 刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新. 双色场控制与测量原子分子超快电子动力学过程的研究进展. 物理学报, doi: 10.7498/aps.65.223206
    [14] 张博, 张春峰, 李希友, 王睿, 肖敏. 单线态分裂的超快光谱学研究. 物理学报, doi: 10.7498/aps.64.094210
    [15] 徐悦, 金钻明, 李高芳, 张郑兵, 林贤, 马国宏, 程振祥. 锰酸钇薄膜中Mn3+离子dd跃迁的超快光谱学研究. 物理学报, doi: 10.7498/aps.61.177802
    [16] 王文芳, 陈科, 邬静达, 文锦辉, 赖天树. 长寿命吸收过程对超快动力学过程测量的影响. 物理学报, doi: 10.7498/aps.60.117802
    [17] 唐小锋, 牛铭理, 周晓国, 刘世林. 基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究. 物理学报, doi: 10.7498/aps.59.6940
    [18] 马海强, 李林霞, 王素梅, 吴张斌, 焦荣珍. 一种全光纤型观测光波粒二象性的方法. 物理学报, doi: 10.7498/aps.59.75
    [19] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布. 物理学报, doi: 10.7498/aps.54.2653
    [20] 常君弢, 吴令安. 单光子探测器量子效率的绝对自身标定方法. 物理学报, doi: 10.7498/aps.52.1132
计量
  • 文章访问数:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-31

/

返回文章
返回