-
252Cf同位素源具有标准的自发裂变中子能谱,但由于其半衰期较短,应用中常需要对源强进行标定修正.随着源年龄增加,来自源中250Cf和248Cm自发裂变的影响愈加凸显,不能简单按252Cf的衰变规律计算源中子发射率,而通过锰浴活化的间接测量方法周期较长,且在源强低于104 n/s时误差较大.最近,基于中子多重性计数的源强绝对测量算法已得到验证.本文进一步从点模型假设的测量方程出发,在将符合计数率与总中子计数率关联的基础上,分别对符合计数率随源位置、符合门宽的变化关系进行回归分析,提取变化过程的特征系数,建立了两种避规效率变化的252Cf中子发射率测量方法,并基于JCC-51型中子符合测量装置开展实验验证.结果表明:两种回归分析方法的测量值均与标称值的修正结果在2%的偏差范围内一致;反推求得装置中轴线上的探测效率也与基于MCNPX程序的蒙特卡罗模拟计算值相符.研究结果可为活度信息不明的252Cf源强标定及符合测量装置的效率刻度提供便携准确的实验方法.The 252Cf isotope sources have a recommended standard neutron spectrum of spontaneous fission, and have been widely used in scientific researches, such as the detection efficiency calibration of neutron detectors, the characterization of neutron dose equivalent meters, the active analysis of special nuclear materials, etc. However, it is often necessary to correct the neutron emission rate due to its short half-life of 2.645 years. As the source age increases the contributions from 250Cf and 248Cm spontaneous fission become more significant, thus the neutron emission rate cannot be calculated simply according to the 252Cf decay law. In addition, the indirect measurement method by manganese bath activation needs a long period more than 8 hours; and it will have a large uncertainty while the source strength is lower than 104 n/s. In order to develop a more portable measurement method for larger suitable dynamic range, the comprehensive algorithms based on the neutron multiplicity counting are studied in this paper. On the basis of the measurement equations under the point model assumption, the neutron coincidence counting rate is correlated with the total neutron counting rate, and then the regression analyses with different coincidence gates and different source locations in the counter are performed. On the assumption that the average neutron die-away time is constant in the sensitive range of detection system, therefore the characteristic coefficient from the changing process can be extracted, and two kinds of methods of measuring the neutron strength are established, which are independent of the efficiency variation. The verification experiments are carried out by the JCC-51 neutron coincidence counter. It is shown that the values measured by the two regression methods are consistent with the corrected results of the nominal value within 2% deviation. Furthermore, the detection efficiency is inversed by dividing the total neutron counting rate with the neutron emission rate when the source is placed at the central axis, which accords with the result of Monte Carlo simulation by using the MCNPX code well. It can provide an accurate method of determining the neutron emission rate of 252Cf spontaneous fission, and also an approach to calibrating the detection efficiency of neutron coincidence counter while the source strength is unknown.
-
Keywords:
- 252Cf spontaneous fission /
- neutron emission rate /
- coincidence measurements /
- regression analysis
[1] David T, Roberto B, Roberto M, Alan T, Andreas Z 2018 Radiat. Prot. Dosim. 180 21
[2] Tadashi A, Toshikazu S, Ikuo M, Masakuni N, Yuichi O 1991 IEEE Trans. Nucl. Sci. 38 1040
[3] Reeder P L, Bowyer S M 2002 Nucl. Instrum. Methods Phys. Res. A 484 469
[4] Lawrence C C, Flaska M M, Ojaruega M, Andreas E, Clarke S D, Pozzi S A, Becchetti F D 2010 IEEE Nulcear Science Symposium & Medical Imaging Conference Knoxville, USA, October 30-November 6, 2010 p110
[5] Józefowicz K, Golnik N, Tulik P, Zielczyński M 2007 Radiat. Prot. Dosim. 126 134
[6] Thiem N L, Hoai N T, Khai T N, Giap V T 2017 Nucl. Eng. Technol. 49 277
[7] Mihalczo J T, Mullens J A, Mattingly J K, Valentine T E 2000 Nucl. Instrum. Methods Phys. Res. A 450 531
[8] Pozzi S A, Segovia J 2002 Nucl. Instrum. Methods Phys. Res. A 491 326
[9] Roberts N J, Jones L N 2007 Radiat. Prot. Dosim. 126 83
[10] Hwang S T, Lee K 1988 Nucl. Instrum. Methods Phys. Res. A 273 381
[11] Croft S, Henzlov D 2013 Nucl. Instrum. Methods Phys. Res. A 714 5
[12] Ridnik T, Dubi C, Israelashvili I, Bagi J, Huszti J 2014 Nucl. Instrum. Methods Phys. Res. A 735 53
[13] Ensslin N, Harker W C, Krick M S, Langner D G, Pickrell M M, Stewart J E 1998 Los Alamos National Laboratory Report LA-13422-M
[14] Francesca F, Paolo P 2010 Radiat. Meas. 45 1034
[15] Berndt R, Brutscher J, Mortreau P 2014 Symposium on International Safeguards: Linking Strategy, Implementation and People Vienna, Austria, October 20-24, 2014 p1
[16] Pelowitz D B 2011 Los Alamos National Laboratory Report LA-CP-11-00438
-
[1] David T, Roberto B, Roberto M, Alan T, Andreas Z 2018 Radiat. Prot. Dosim. 180 21
[2] Tadashi A, Toshikazu S, Ikuo M, Masakuni N, Yuichi O 1991 IEEE Trans. Nucl. Sci. 38 1040
[3] Reeder P L, Bowyer S M 2002 Nucl. Instrum. Methods Phys. Res. A 484 469
[4] Lawrence C C, Flaska M M, Ojaruega M, Andreas E, Clarke S D, Pozzi S A, Becchetti F D 2010 IEEE Nulcear Science Symposium & Medical Imaging Conference Knoxville, USA, October 30-November 6, 2010 p110
[5] Józefowicz K, Golnik N, Tulik P, Zielczyński M 2007 Radiat. Prot. Dosim. 126 134
[6] Thiem N L, Hoai N T, Khai T N, Giap V T 2017 Nucl. Eng. Technol. 49 277
[7] Mihalczo J T, Mullens J A, Mattingly J K, Valentine T E 2000 Nucl. Instrum. Methods Phys. Res. A 450 531
[8] Pozzi S A, Segovia J 2002 Nucl. Instrum. Methods Phys. Res. A 491 326
[9] Roberts N J, Jones L N 2007 Radiat. Prot. Dosim. 126 83
[10] Hwang S T, Lee K 1988 Nucl. Instrum. Methods Phys. Res. A 273 381
[11] Croft S, Henzlov D 2013 Nucl. Instrum. Methods Phys. Res. A 714 5
[12] Ridnik T, Dubi C, Israelashvili I, Bagi J, Huszti J 2014 Nucl. Instrum. Methods Phys. Res. A 735 53
[13] Ensslin N, Harker W C, Krick M S, Langner D G, Pickrell M M, Stewart J E 1998 Los Alamos National Laboratory Report LA-13422-M
[14] Francesca F, Paolo P 2010 Radiat. Meas. 45 1034
[15] Berndt R, Brutscher J, Mortreau P 2014 Symposium on International Safeguards: Linking Strategy, Implementation and People Vienna, Austria, October 20-24, 2014 p1
[16] Pelowitz D B 2011 Los Alamos National Laboratory Report LA-CP-11-00438
计量
- 文章访问数: 6950
- PDF下载量: 87
- 被引次数: 0