搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

门控下InGaAs/InP单光子探测器用于符合测量的时域滤波特性研究

靳亚晴 董瑞芳 权润爱 项晓 刘涛 张首刚

引用本文:
Citation:

门控下InGaAs/InP单光子探测器用于符合测量的时域滤波特性研究

靳亚晴, 董瑞芳, 权润爱, 项晓, 刘涛, 张首刚

Temporal filtering characteristics of gated InGaAs/InP single-photon detectors for coincidence measurement

Jin Ya-Qing, Dong Rui-Fang, Quan Run-Ai, Xiang Xiao, Liu Tao, Zhang Shou-Gang
PDF
HTML
导出引用
  • 基于砷化镓/磷化铟雪崩光电二极管(InGaAs/InP APD)的半导体单光子探测器因工作在通信波段, 且具有体积小、成本低、操作方便等优势, 在实用化量子通信技术中发挥了重要作用. 为尽可能避免暗计数和后脉冲对单光子探测的影响, InGaAs/InP单光子探测器广泛采用门控技术来快速触发和淬灭雪崩效应, 有效门宽通常在纳秒量级. 本文研究揭示了门控下单光子探测器可测量的最大符合时间宽度受限于门控脉冲的宽度, 理论分析与实验结果良好拟合. 该研究表明, 门控下InGaAs/InP单光子探测器用于双光子符合测量具有显著的时域滤波特性, 限制了其在基于双光子时间关联测量的量子信息技术中的应用.
    Semiconductor single-photon avalanche detectors (SPADs) have played an important role in practical quantum communication technology due to their advantages of small size, low cost and easy operation. Among them, InGaAs/InP SPADs have been widely used in fiber-optic quantum key distribution systems due to their response wavelength range in a near-infrared optical communication band. In order to avoid the influence of dark count and afterpulsing on single photon detection, the gated quenching technologies are widely applied to the InGaAs/InP SPADs. Typically, the duration of gate pulse is set to be as short as a few nanoseconds or even less. As the detection of the arrival of single photons depends on the coincidence between the arrival time of gate pulse and the arrival time of photon, the gate pulse duration of the InGaAs/InP SPADs inevitably affects the effective detection of the single photons. Without the influence of dispersion, the temporal width of the transmitted photons is usually on the order of picoseconds or even less, which is much shorter than the gate width of the InGaAs/InP SPAD. Therefore, the gate width normally has no influence on the temporal measurement of the detected photons. However, in quantum systems involving large dispersion, such as the long-distance fiber-optic quantum communication system, the temporal width of the transmitted photons is significantly broadened by the experienced dispersion so that it may approach to or even exceed the gate width of the single-photon detector. As a result, the effect of the gate width on the recording of the arrival time of the dispersed photons should be taken into account. In this paper, the influence of the gate width coupled to the InGaAs/InP single photon detectors on the measurement of the two-photon coincidence time width is studied both theoretically and experimentally. The theoretical analysis and experimental results are in good agreement with each other, showing that the finally measured coincidence time width of the two-photon state after dispersion is not more than half of the effective gate pulses width. The maximum observable coincidence time width based on the gated single photon detector is fundamentally limited by the gate width, which restricts its applications in quantum information processing based on the two-photon temporal correlation measurement.
      通信作者: 董瑞芳, dongruifang@ntsc.ac.cn ; 张首刚, szhang@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12033007, 61875205, 61801458, 91836301)、中国科学院前沿科学重点研究项目(批准号: QYZDB-SW-SLH007)、中国科学院战略性先导科技专项C类项目(批准号: XDC07020200)、中国科学院“西部青年学者”项目(批准号: XAB2019B17, XAB2019B15)、广东省重点研发项目(批准号: 2018B030325001)、中国科学院重点项目(批准号: ZDRW-KT-2019-1-0103)资助的课题
      Corresponding author: Dong Rui-Fang, dongruifang@ntsc.ac.cn ; Zhang Shou-Gang, szhang@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12033007, 61875205, 61801458, 91836301), the Frontier Science Key Research Project of Chinese Academy of Sciences (Grant No. QYZDB-SW-SLH007), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDC07020200), the “Western Young Scholar” Project of Chinese Academy of Sciences (Grant Nos. XAB2019B17, XAB2019B15), the Key R&D Program of Guangdong province, China (Grant No. 2018B030325001), the Chinese Academy of Sciences Key Project, China (Grant No. ZDRW-KT-2019-1-0103)
    [1]

    Li L, Davis L M 1993 Rev. Sci. Instrum. 64 1524Google Scholar

    [2]

    Levine B F, Bethea C G, Campbell J C 1985 Appl. Phys. Lett. 46 333Google Scholar

    [3]

    Levine B F, Bethea C G, Campbell J C 1985 Electron. Lett. 21 194Google Scholar

    [4]

    Sun X, Krainak M A, Abshire J B, Spinhirne J D, Trottier C, Davies M, Dautet H, Allan G R, Lukemire A T, Vandiver J C 2004 J. Mod. Opt. 51 1333Google Scholar

    [5]

    Hu J, Li L, Yang W, Manna L, Wang L, Alivisatos A P 2001 Science 292 2060Google Scholar

    [6]

    Ren M, Gu X, Liang Y, Kong W, Wu E, Wu G, Zeng H 2011 Opt. Express 19 13497Google Scholar

    [7]

    Keller O 2012 Sci. China, Ser. G 55 1389Google Scholar

    [8]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [9]

    Scarani V, Bechmannpasquinucci H, Cerf N J, Dusek M, Lutkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [10]

    Donaldson W R, Marciante J R, Roides R G 2009 IEEE J. Quantum Electron. 46 191

    [11]

    Xiang X, Dong R, Quan R, Jin Y, Yang Y, Li M, Liu T, Zhang S 2020 Opt. Lett. 45 2993Google Scholar

    [12]

    Rarity J, Tapster P R 1990 Phys. Rev. Lett. 64 2495Google Scholar

    [13]

    Valencia A, Scarcelli G, Shih Y 2004 Appl. Phys. Lett. 85 2655Google Scholar

    [14]

    Quan R, Zhai Y, Wang M, Hou F, Wang S, Xiang X, Liu T, Zhang S, Dong R 2016 Sci. Rep. 6 30453Google Scholar

    [15]

    Quan R, Dong R, Zhai Y, Hou F, Xiang X, Zhou H, Lv C, Wang Z, You L, Liu T 2019 Opt. Lett. 44 614Google Scholar

    [16]

    Hou F, Quan R, Dong R, Xiang X, Li B, Liu T, Yang X, Li H, You L, Wang Z 2019 Phys. Rev. A 100

    [17]

    Hadfield R H 2009 Nat. Photonics 3 696Google Scholar

    [18]

    Zhang J, Itzler M A, Zbinden H, Pan J 2015 Light Sci. Appl. 4 e286Google Scholar

    [19]

    Cova S, Ghioni M, Lacaita A L, Samori C, Zappa F 1996 Appl. Opt. 35 1956Google Scholar

    [20]

    Ribordy G, Gautier J, Zbinden H, Gisin N 1998 Appl. Opt. 37 2272Google Scholar

    [21]

    Namekata N, Sasamori S, Inoue S 2006 Opt. Express 14 10043Google Scholar

    [22]

    Liang X, Liu J, Wang Q, Du D, Ma J, Jin G, Chen Z, Zhang J, Pan J 2012 Rev. Sci. Instrum. 83 083111Google Scholar

    [23]

    Walenta N, Lunghi T, Guinnard O, Houlmann R, Zbinden H, Gisin N 2012 J. Appl. Phys. 112 063106Google Scholar

    [24]

    Yuan Z L, Kardynal B, Sharpe A W, Shields A J 2007 Appl. Phys. Lett. 91 041114Google Scholar

    [25]

    Chen X, Wu E, Wu G, Zeng H 2010 Opt. Express 18 7010Google Scholar

    [26]

    Zhang Y, Zhang X, Wang S 2013 Opt. Lett. 38 606Google Scholar

    [27]

    Liu X, Yao X, Wang H, Li H, Wang Z, You L, Huang Y, Zhang W 2019 Appl. Phys. Lett. 114 141104Google Scholar

    [28]

    Alikhan I, Broadbent C J, Howell J C 2007 Phys. Rev. Lett. 98 060503Google Scholar

    [29]

    Shih Y 2007 IEEE J. Sel. Top. Quantum Electron. 13 1016Google Scholar

    [30]

    Dong S, Zhang W, Huang Y, Peng J 2016 Sci. Rep. 6 26022Google Scholar

    [31]

    Franson J D 1992 Phys. Rev. A 45 3126Google Scholar

    [32]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N 2002 Phys. Rev. Lett. 88 183602Google Scholar

    [33]

    Valencia A, Chekhova M V, Trifonov A, Shih Y 2002 Phys. Rev. Lett. 88 183601Google Scholar

    [34]

    Hou F, Xiang X, Quan R, Wang M, Zhai Y, Wang S, Liu T, Zhang S, Dong R 2016 Appl. Phys. B 122 128

    [35]

    Yang Y, Xiang X, Hou F, Quan R, Li B, Li W, Zhu N, Liu T, Zhang S, Dong R 2020 Opt. Express 28 7488Google Scholar

    [36]

    Ware M, Migdall A L, Bienfang J C, Polyakov S V 2007 J. Mod. Opt. 54 361Google Scholar

    [37]

    ID Quantique, Photon Counting for Brainies, id https://www. optoscience.com/maker/id/pdf/IDQ_Photon_counting_for_Brainies.pdf [2020-10-06]

  • 图 1  基于门控下单光子探测器对于纠缠双光子时间关联分布测量时域滤波示意图

    Fig. 1.  Schematic diagram of time-domain filtering for entangled two-photon correlation measurement with gated mode single-photon detector.

    图 2  不同光子带宽的纠缠光源在不同门控信号下, 双光子符合FWHM随SMF长度变化的理论曲线 (a) $\Delta \lambda = 7.17\;{\rm{nm}}$; (b) $\Delta \lambda = 2.46\;{\rm{nm}}$

    Fig. 2.  The theoretical temporal FWHM result versus the different SMF length under different gate signal for the entangled light with different bandwidth: (a) $\Delta \lambda = 7.17\;{\rm{nm}}$; (b) $\Delta \lambda = 2.46\;{\rm{nm}}$.

    图 3  通信波段频率反关联纠缠光源的产生及其双光子符合测量实验装置图 (a1), (a2)基于I类和II类SPDC的频率纠缠源产生过程; (b)信号光子和闲置光子分别经过光纤SMF1和SMF2的传输过程; (c1), (c2)基于超导纳米线单光子探测器(SNSPD)和InGaAs/InP单光子探测器(SPD4)的测量系统

    Fig. 3.  Experimental setup diagram of the generation of frequency anti-correlated entangled light sources in the telecommunication band and their two-photon joint distribution measurement after dispersive propagation: (a1), (a2) The generation process of entangled sources from type-I and type-II SPDC pumped by 780 nm quasi-monochromatic laser; (b) photon transmission through sperate single-mode fiber SMF1 and SMF2; (c1), (c2) coincidence measurement system based on the Superconducting nanowire single-photon detectors (SNSPD) and InGaAs/InP single-photon detectors (SPD4).

    图 4  基于II类SPDC过程的纠缠光子对, 每臂经过不同长度SMF色散展宽之后, 进行符合测量的结果 (a) 1 km; (b) 3 km; (c) 5 km; (d) 10 km

    Fig. 4.  The coincidence measurement results of the entangled photon pair from type-II SPDC process when the photon is dispersed by SMF with different lengths: (a) 1 km; (b) 3 km; (c) 5 km; (d) 10 km.

    图 5  使用不同类型反关联频率纠缠光源下, 符合测量FWHM随SMF长度变化的测量和理论结果 (a) I类SPDC; (b) II类SPDC

    Fig. 5.  The measurement and theoretical FWHM results of the temporal coincidence measurement for different types of anti-correlated frequency entangled light with different SMF length: (a) Type I SPDC; (b) Type II SPDC.

    图 6  基于I类SPDC的纠缠光子对符合测量时间FWHM随SMF的长度变化的结果

    Fig. 6.  The measurement FWHM results of the temporal coincidence measurement for type-I SPDC process when the photon is dispersed with different SMF length.

    图 7  基于I类SPDC过程的纠缠光子对每臂经过不同长度SMF色散展宽之后, 采用ID210与SPD4进行符合测量的结果 (a) 约1 km; (b) 约3 km

    Fig. 7.  After each photon is dispersed by the SMF with different lengths, the coincidence measurement of the photon pairs from the type-I SPDC process is made by using ID210 and SPD4: (a) About 1 km; (b) about 3 km.

  • [1]

    Li L, Davis L M 1993 Rev. Sci. Instrum. 64 1524Google Scholar

    [2]

    Levine B F, Bethea C G, Campbell J C 1985 Appl. Phys. Lett. 46 333Google Scholar

    [3]

    Levine B F, Bethea C G, Campbell J C 1985 Electron. Lett. 21 194Google Scholar

    [4]

    Sun X, Krainak M A, Abshire J B, Spinhirne J D, Trottier C, Davies M, Dautet H, Allan G R, Lukemire A T, Vandiver J C 2004 J. Mod. Opt. 51 1333Google Scholar

    [5]

    Hu J, Li L, Yang W, Manna L, Wang L, Alivisatos A P 2001 Science 292 2060Google Scholar

    [6]

    Ren M, Gu X, Liang Y, Kong W, Wu E, Wu G, Zeng H 2011 Opt. Express 19 13497Google Scholar

    [7]

    Keller O 2012 Sci. China, Ser. G 55 1389Google Scholar

    [8]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [9]

    Scarani V, Bechmannpasquinucci H, Cerf N J, Dusek M, Lutkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [10]

    Donaldson W R, Marciante J R, Roides R G 2009 IEEE J. Quantum Electron. 46 191

    [11]

    Xiang X, Dong R, Quan R, Jin Y, Yang Y, Li M, Liu T, Zhang S 2020 Opt. Lett. 45 2993Google Scholar

    [12]

    Rarity J, Tapster P R 1990 Phys. Rev. Lett. 64 2495Google Scholar

    [13]

    Valencia A, Scarcelli G, Shih Y 2004 Appl. Phys. Lett. 85 2655Google Scholar

    [14]

    Quan R, Zhai Y, Wang M, Hou F, Wang S, Xiang X, Liu T, Zhang S, Dong R 2016 Sci. Rep. 6 30453Google Scholar

    [15]

    Quan R, Dong R, Zhai Y, Hou F, Xiang X, Zhou H, Lv C, Wang Z, You L, Liu T 2019 Opt. Lett. 44 614Google Scholar

    [16]

    Hou F, Quan R, Dong R, Xiang X, Li B, Liu T, Yang X, Li H, You L, Wang Z 2019 Phys. Rev. A 100

    [17]

    Hadfield R H 2009 Nat. Photonics 3 696Google Scholar

    [18]

    Zhang J, Itzler M A, Zbinden H, Pan J 2015 Light Sci. Appl. 4 e286Google Scholar

    [19]

    Cova S, Ghioni M, Lacaita A L, Samori C, Zappa F 1996 Appl. Opt. 35 1956Google Scholar

    [20]

    Ribordy G, Gautier J, Zbinden H, Gisin N 1998 Appl. Opt. 37 2272Google Scholar

    [21]

    Namekata N, Sasamori S, Inoue S 2006 Opt. Express 14 10043Google Scholar

    [22]

    Liang X, Liu J, Wang Q, Du D, Ma J, Jin G, Chen Z, Zhang J, Pan J 2012 Rev. Sci. Instrum. 83 083111Google Scholar

    [23]

    Walenta N, Lunghi T, Guinnard O, Houlmann R, Zbinden H, Gisin N 2012 J. Appl. Phys. 112 063106Google Scholar

    [24]

    Yuan Z L, Kardynal B, Sharpe A W, Shields A J 2007 Appl. Phys. Lett. 91 041114Google Scholar

    [25]

    Chen X, Wu E, Wu G, Zeng H 2010 Opt. Express 18 7010Google Scholar

    [26]

    Zhang Y, Zhang X, Wang S 2013 Opt. Lett. 38 606Google Scholar

    [27]

    Liu X, Yao X, Wang H, Li H, Wang Z, You L, Huang Y, Zhang W 2019 Appl. Phys. Lett. 114 141104Google Scholar

    [28]

    Alikhan I, Broadbent C J, Howell J C 2007 Phys. Rev. Lett. 98 060503Google Scholar

    [29]

    Shih Y 2007 IEEE J. Sel. Top. Quantum Electron. 13 1016Google Scholar

    [30]

    Dong S, Zhang W, Huang Y, Peng J 2016 Sci. Rep. 6 26022Google Scholar

    [31]

    Franson J D 1992 Phys. Rev. A 45 3126Google Scholar

    [32]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N 2002 Phys. Rev. Lett. 88 183602Google Scholar

    [33]

    Valencia A, Chekhova M V, Trifonov A, Shih Y 2002 Phys. Rev. Lett. 88 183601Google Scholar

    [34]

    Hou F, Xiang X, Quan R, Wang M, Zhai Y, Wang S, Liu T, Zhang S, Dong R 2016 Appl. Phys. B 122 128

    [35]

    Yang Y, Xiang X, Hou F, Quan R, Li B, Li W, Zhu N, Liu T, Zhang S, Dong R 2020 Opt. Express 28 7488Google Scholar

    [36]

    Ware M, Migdall A L, Bienfang J C, Polyakov S V 2007 J. Mod. Opt. 54 361Google Scholar

    [37]

    ID Quantique, Photon Counting for Brainies, id https://www. optoscience.com/maker/id/pdf/IDQ_Photon_counting_for_Brainies.pdf [2020-10-06]

  • [1] 宋文刚, 张立军, 张晶, 王冠鹰. 硅漂移探测器数字脉冲处理技术. 物理学报, 2022, 71(1): 012903. doi: 10.7498/aps.71.20211062
    [2] 黄典, 戴万霖, 王轶文, 贺青, 韦联福. 超导动态电感单光子探测器的噪声处理. 物理学报, 2021, 70(14): 140703. doi: 10.7498/aps.70.20210185
    [3] 赵磊, 徐妙华, 张翌航, 张喆, 朱保君, 姜炜曼, 张笑鹏, 赵旭, 仝博伟, 贺书凯, 卢峰, 吴玉迟, 周维民, 张发强, 周凯南, 谢娜, 黄征, 仲佳勇, 谷渝秋, 李玉同, 李英骏. 利用气泡探测器测量激光快中子. 物理学报, 2018, 67(22): 222101. doi: 10.7498/aps.67.20181035
    [4] 李永明, 王亮, 陈想林, 阮念寿, 赵德山. 252Cf自发裂变中子发射率符合测量的回归分析. 物理学报, 2018, 67(24): 242901. doi: 10.7498/aps.67.20181073
    [5] 贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋. 用于激光加速质子参数表征的带电粒子活化测谱技术. 物理学报, 2017, 66(20): 205201. doi: 10.7498/aps.66.205201
    [6] 刘建强, 王旭阳, 白增亮, 李永民. 时域脉冲平衡零拍探测器的高精度自动平衡. 物理学报, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [7] 王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵. X射线通信系统的误码率分析. 物理学报, 2015, 64(12): 120701. doi: 10.7498/aps.64.120701
    [8] 李明飞, 杨然, 霍娟, 赵连洁, 杨文良, 王俊, 张安宁. 基于光子计数的合作目标量子成像. 物理学报, 2015, 64(22): 224208. doi: 10.7498/aps.64.224208
    [9] 张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜. 超导转变边沿单光子探测器原理与研究进展. 物理学报, 2014, 63(20): 200303. doi: 10.7498/aps.63.200303
    [10] 王进, 魏正军, 王赓, 郭莉, 王金东, 张智明, 郭健平, 郭邦红, 刘颂豪. 数字平均对红外单光子探测器中温度控制系统信噪改善比的影响. 物理学报, 2013, 62(1): 014203. doi: 10.7498/aps.62.014203
    [11] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [12] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [13] 马海强, 李林霞, 王素梅, 吴张斌, 焦荣珍. 一种全光纤型观测光波粒二象性的方法. 物理学报, 2010, 59(1): 75-79. doi: 10.7498/aps.59.75
    [14] 程楠, 黄刚锋, 王金东, 魏正军, 郭健平, 廖常俊, 刘颂豪. 同轴电缆反射方案单光子探测器的特性研究. 物理学报, 2010, 59(8): 5338-5344. doi: 10.7498/aps.59.5338
    [15] 张庆斌, 洪伟毅, 兰鹏飞, 杨振宇, 陆培祥. 利用调制的偏振态门控制阿秒脉冲的产生. 物理学报, 2008, 57(12): 7848-7854. doi: 10.7498/aps.57.7848
    [16] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [17] 欧阳晓平, 李真富, 霍裕昆, 宋献才. 用于脉冲γ强度测量的φ60,1000μm PIN探测器. 物理学报, 2007, 56(3): 1353-1357. doi: 10.7498/aps.56.1353
    [18] 李 园, 李 刚, 张玉驰, 王晓勇, 王军民, 张天才. 计数率和分辨时间对光场统计性质测量的影响——单探测器直接测量的实验分析. 物理学报, 2006, 55(11): 5779-5783. doi: 10.7498/aps.55.5779
    [19] 常君弢, 吴令安. 单光子探测器量子效率的绝对自身标定方法. 物理学报, 2003, 52(5): 1132-1136. doi: 10.7498/aps.52.1132
    [20] 孙景文. X射线探测器的脉冲标定技术. 物理学报, 1986, 35(7): 864-873. doi: 10.7498/aps.35.864
计量
  • 文章访问数:  5923
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-06
  • 修回日期:  2020-10-30
  • 上网日期:  2021-03-25
  • 刊出日期:  2021-04-05

/

返回文章
返回