-
谷间电子散射机制对锗锡材料的电子输运及光电性能的影响至关重要. 本文构建了锗锡材料Γ和L能谷之间的谷间光学声子散射模型, 研究其谷间电子转移效应. 结果表明: 散射率RΓL高于RLΓ约一个数量级, 同时RΓL随Sn组分的增加而减小, 并在Sn组分大于0.1时趋于饱和; 而RLΓ几乎与Sn组分无关. 谷间电子转移模型表明, Γ能谷电子填充率随Sn组分的增大呈现先增大后趋于饱和的规律, 且与注入电子浓度关系不大. 不考虑散射模型时, 间接带Ge1–xSnx材料Γ能谷电子填充率与注入电子浓度关系不大; 直接带Ge1–xSnx材料Γ能谷电子填充率与注入电子浓度相关, 且电子浓度越低, Γ能谷电子填充率越大. 研究成果有助于理解锗锡材料的电子迁移率、电输运和光电转换等微观机制, 可为锗锡材料在微电子和光电子等领域提供理论参考价值.
Ge1–xSnx alloys have aroused great interest in silicon photonics because of their compatiblity with complementary metal-oxide-semiconductor (CMOS) technology. As a result, they are considered potential candidate materials. Owing to the significant differences in effective mass within the valleys, the unique dual-valley structure of Γ valley and L valley in energy can improve the optoelectronic properties of Ge1-xSnx alloys. Therefore, inter-valley scattering mechanisms between the Γ and L valley in Ge1–xSnx alloys are crucial for understanding the electronic transports and optical properties of Ge1–xSnx materials. This work focuses on the theoretical analysis of inter-valley scattering mechanisms between Γ and L valley, and hence on the electron transmission dynamics in Ge1–xSnx alloys based on the phenomenological theory model. Firstly, the 30th-order k·p perturbation theory is introduced to reproduce the band structure of Ge1–xSnx. The results show that the effective mass of L valley is always about an order of magnitude higher than that of Γ valley, which will significantly influence the electron distributions between Γ and L valley. Secondly, the scattering mechanism is modeled in Ge1–xSnx alloys. The results indicate that scattering rate RΓL is about an order of magnitude higher than RLΓ, while RΓL decreases with the increase of Sn composition and tends to saturate when Sn component is greater than 0.1. And RΓL is almost independent of the Sn component. Thirdly, kinetic processes of carriers between Γ and L valley are proposed to analyze the electron transmission dynamics in Ge1–xSnx alloys. Numerical results indicate that the electron population ratio for Γ-valley increases and then tends to saturation with the increase of Sn composition, and is independent of the injected electron concentration. The model without the scattering mechanism indicates that the electron population ratio for Γ-valley in indirect-Ge1–xSnx alloys is independent of the injected electron concentration, while the electron population ratio for Γ-valley in direct-Ge1–xSnx alloys is dependent on the injected electron concentration, and the lower the electron concentration, the greater the electron population ratio for Γ-valley is. The results open a new way of understanding the mechanisms of electron mobility, electrical transport, and photoelectric conversion in Ge1–xSnx alloys, and can provide theoretical value for designing Ge1–xSnx alloys in the fields of microelectronics and optoelectronics. -
-
[1] Miao Y H, Wang G L, Kong Z Z, Xu B Q, Zhao X W, Luo X, Lin H X, Dong Y, Lu B, Dong L P, Zhou J R, Liu J B, Radamson H H 2021 Nanomaterials 11 2556Google Scholar
[2] Oka H, Mizubayashi W, Ishikawa Y, Uchida N, Mori T, Endo K 2021 Appl. Phys. Express 14 096501Google Scholar
[3] Zhang D, Song J J, Xue X X, Zhang S Q 2022 Chin. Phys. B 31 068401Google Scholar
[4] Wang H J, Han G Q, Jiang X W, Liu Y, Zhang J C, Hao Y 2019 IEEE Trans. Electron Devices 66 1985Google Scholar
[5] Wang P C, Huang P R, Ghosh S, Bansal R, Jheng Y T, Lee K C, Cheng H H, Chang G E 2024 ACS Photonics 11 2659Google Scholar
[6] Reboud V, Concepción O, Du W, El Kurdi M, Hartmann J M, Ikonic Z, Assali S, Pauc N, Calvo V, Cardoux C, Kroemer E, Coudurier N, Rodriguez P, Yu S Q, Buca D, Chelnokov A 2024 Photon. Nanostruc. Fundam. Appl. 58 101233Google Scholar
[7] Zheng J, Liu Z, Xue C L, Li C B, Zuo Y H, Cheng B W, Wang Q M 2018 J. Semicond. 39 061006Google Scholar
[8] Zhou Y Y, Dou W, Du W, Pham T, Ghetmiri S A, Al-Kabi S, Mosleh A, Alher M, Margetis J, Tolle J, Sun G, Soref R, Li B, Mortazavi M, Naseem H, Yu S Q 2016 J. Appl. Phys. 120 023102Google Scholar
[9] Ghetmiri S A, Du W, Margetis J, Mosleh A, Cousar L, Conley B R, LucasDomulevicz, Nazzal A, Sun G, Soref R A, Tolle J, Li B, Naseem H A, Yu S Q 2014 Appl. Phys. Lett. 105 151109Google Scholar
[10] Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88Google Scholar
[11] Arakawa Y, Nakamura T, Urino Y, Fujita T 2013 IEEE Commun. Mag. 51 72
[12] Wu S T, Zhang L, Wan R Q, Zhou H, Lee K H, Chen Q M, Huang Y C, Gong X, Tan C S 2023 Photonics Res. 11 1606Google Scholar
[13] Liu X Q, Zhang J, Niu C Q, Liu T R, Huang Q X, Li M M, Zhang D D, Pang Y Q, Liu Z, Zuo Y H, Cheng B W 2022 Photonics Res. 10 1567Google Scholar
[14] Ghosh S, Sun G, Yu S Q, Chang G E 2025 IEEE J. Sel. Top. Quantum Electron. 31 1
[15] 黄诗浩, 谢文明, 汪涵聪, 林光杨, 王佳琪, 黄巍, 李成 2018 物理学报 67 040501Google Scholar
Huang S H, Xie W M, Wang H C, Lin G Y, Wang J Q, Huang W, Li C 2018 Acta Phys. Sin. 67 040501Google Scholar
[16] Huang S H, Zheng Q Q, Xie W M, Lin J Y, Huang W, Li C, Qi D F 2018 J. Phys. Condens. Matter 30 465701Google Scholar
[17] Murphy-Armando F, Murray É D, Savić I, Trigo M, Reis D A, Fahy S 2023 Appl. Phys. Lett. 122 012202Google Scholar
[18] Wang C, Wang H, Chen W, Xie X, Zong J, Liu L, Jin S, Zhang Y, Yu F, Meng Q, Tian Q, Wang L, Ren W, Li F, Zhang H, Zhang Y 2021 Nano Lett. 21 8258Google Scholar
[19] Stern M J, René de Cotret L P, Otto M R, Chatelain R P, Boisvert J P, Sutton M, Siwick B J 2018 Phys. Rev. B 97 165416Google Scholar
[20] Huang P, Zhang Y, Hu K, Qi J, Zhang D, Cheng L 2024 Chin. Phys. B 33 017201Google Scholar
[21] Rogowicz E, Kopaczek J, Kutrowska-Girzycka J, Myronov M, Kudrawiec R, Syperek M 2021 ACS Appl. Electron. Mater. 3 344Google Scholar
[22] Rideau D, Feraille M, Ciampolini L, Minondo M, Tavernier C, Jaouen H, Ghetti A 2006 Phys. Rev. B 74 195208Google Scholar
[23] Song Z, Fan W, Tan C S, Wang Q, Nam D, Zhang D H, Sun G 2019 New J. Phys. 21 073037Google Scholar
[24] Lever L, Ikonić Z, Valavanis A, Kelsall R W, Myronov M, Leadley D R, Hu Y, Owens N, Gardes F Y, Reed G T 2012 J. Appl. Phys. 112 123105Google Scholar
[25] Liu S Q, Yen S T 2019 J. Appl. Phys. 125 245701Google Scholar
[26] Wang X, Li H, Camacho-Aguilera R, Cai Y, Kimerling L C, Michel J, Liu J 2013 Opt. Lett. 38 652Google Scholar
[27] Claussen S A, Tasyurek E, Roth J E, Miller D A B 2010 Opt. Express 18 25596Google Scholar
[28] Zhou X Q, van Driel H M, Mak G 1994 Phys. Rev. B 50 5226Google Scholar
[29] Mak G, van Driel H M 1994 Phys. Rev. B 49 16817Google Scholar
计量
- 文章访问数: 251
- PDF下载量: 10
- 被引次数: 0