-
谷间电子散射机制对锗锡材料的电子输运及光电性能的影响至关重要。本文构建了锗锡材料
G 和L能谷之间的谷间光学声子散射模型,研究其谷间电子转移效应。结果表明,散射率RΓL高于RLΓ约一个数量级,同时RΓL随Sn组分的增加而减小,并在Sn组分大于0.1时趋于饱和;而RLΓ几乎与Sn组分无关。谷间电子转移模型表明,Γ能谷电子填充率随Sn组分的增大呈现先增大后趋于饱和的规律,且与注入电子浓度关系不大。不考虑散射模型时,间接带Ge1-xSnx材料Γ能谷电子填充率与注入电子浓度关系不大;直接带Ge1-xSnx材料Γ能谷电子填充率与注入电子浓度相关,且电子浓度越低,Γ能谷电子填充率越大。研究成果有助于理解锗锡材料的电子迁移率、电输运和光电转换等微观机制,可为锗锡材料在微电子和光电子等领域提供理论参考价值。Ge1-xSnxalloys have attracted great interest as a possible candidate for silicon photonics by its compatible with complementary metal-oxide-semiconductor (CMOS) technology. The unique dual-valley structure of Γand L valleys in energy can improve the optoelectronic properties of Ge1-xSnxalloys due to the significant differences in effective mass within the valleys. Thus inter-valley scattering mechanisms between the Γand L valleys in Ge1-xSnx alloys are of paramount importance for understanding the electronic transport and optical properties of Ge1-xSnx material. This letter focuses on the theoretical analysis of inter-valley scattering mechanisms between Γand L valleys, and hence on the electron transmission dynamics in Ge1-xSnx alloys based on the phenomenological theory model.
Firstly, the 30th-order k·p perturbation theory is introduced to reproduce the band structure of Ge1-xSnx. Results show that effective mass ofL valley is always about an order of magnitude higher than that of Γvalley, which will significantly influence the electron distributions between Γand L valleys.
Secondly, the scattering mechanism has been modeled in Ge1-xSnx alloys. Results indicate that scattering rate RΓL is about an order of magnitude higher than RLΓ, while RΓL decreases with the increase of Sn composition and tends to saturate when Sn component is greater than 0.1. And RΓL is almost independent of the Sn component.
Thirdly, kinetic processes of carriers between Γand L valleys have been proposed to analyze the electron transmission dynamics in Ge1-xSnx alloys. Numerical results indicate that the electron population ratio for Γ-valley increases and then tends to saturation with the increase of Sn composition, and is independent of the injected electron concentration. The model without the scattering mechanism indicates that the electron population ratio for Γ-valley in indirect-Ge1-xSnx alloys is independent of the injected electron concentration, while the electron population ratio for Γ-valley in direct-Ge1-xSnx alloys is dependent of the injected electron concentration, and the lower the electron concentration, the greater the electron population ratio for Γ-valley.
Results open a new way to understanding the mechanisms of electron mobility, electrical transport, and photoelectric conversion in Ge1-xSnx alloys, and can provide theoretical value for the design of Ge1-xSnx alloys in the fields of microelectronics and optoelectronics. -
[1] Miao Y, Wang G, Kong Z, Xu B, Zhao X, Luo X, Lin H, Dong Y, Lu B, Dong L, Zhou J, Liu J, Radamson H H 2021 Nanomaterials 11 2556
[2] Oka H, Mizubayashi W, Ishikawa Y, Uchida N, Mori T, Endo K 2021 Appl. Phys. Express 14 096501
[3] Zhang D, Song J, Xue X, Zhang S 2022 Chin. Phys. B 31 068401
[4] Wang H, Han G, Jiang X, Liu Y, Zhang J, Hao Y 2019 IEEE Trans. Electron Devices 66 1985
[5] Wang P C, Huang P R, Ghosh S, Bansal R, Jheng Y T, Lee K C, Cheng H H, Chang G E 2024 ACS Photonics 11 2659
[6] Reboud V, Concepción O, Du W, El Kurdi M, Hartmann J M, Ikonic Z, Assali S, Pauc N, Calvo V, Cardoux C, Kroemer E, Coudurier N, Rodriguez P, Yu S Q, Buca D, Chelnokov A 2024 Photon. Nanostruc. Fundam. Appl. 58 101233
[7] Zheng J, Liu Z, Xue C, Li C, Zuo Y, Cheng B, Wang Q 2018 J. Semicond. 39 061006
[8] Zhou Y, Dou W, Du W, Pham T, Ghetmiri S A, Al-Kabi S, Mosleh A, Alher M, Margetis J, Tolle J, Sun G, Soref R, Li B, Mortazavi M, Naseem H, Yu S-Q 2016 J. Appl. Phys. 120 023102
[9] Ghetmiri S A, Du W, Margetis J, Mosleh A, Cousar L, Conley B R, LucasDomulevicz, Nazzal A, Sun G, Soref R A, Tolle J, Li B, Naseem H A, Yu S Q 2014 Appl. Phys. Lett.105 151109
[10] Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D 2015 Nat. Photonics 9 88
[11] Y. Arakawa, Takahiro Nakamura, Urino Y, Fujita T 2013 IEEE Commun. Mag. 51 72
[12] Wu S, Zhang L, Wan R, Zhou H, Lee K H, Chen Q, Huang Y-C, Gong X, Tan C S 2023 Photonics Res. 11 1606
[13] Liu X, Zhang J, Niu C, Liu T, Huang Q, Li M, Zhang D, Pang Y, Liu Z, Zuo Y, Cheng B 2022 Photonics Res. 10 1567
[14] Ghosh S, Sun G, Yu S Q, Chang G E 2025 IEEE J. Sel. Top. Quantum Electron. 31 1
[15] Huang S H, Xie W M, Wang H C, Lin G Y, Wang J Q, Huang W, Li C 2018 Acta Phys. Sin. 67 040501(in Chinese) [黄诗浩,谢文明,汪涵聪,林光杨,王佳琪,黄巍,李成2018物理学报67 040501]
[16] Huang S H, Zheng Q Q, Xie W M, Lin J Y, Huang W, Li C, Qi D F 2018 J. Phys. Condens. Matter 30 465701
[17] Murphy-Armando F, Murray É D, Savić I, Trigo M, Reis D A, Fahy S 2023 Appl. Phys. Lett. 122 012202
[18] Wang C, Wang H, Chen W, Xie X, Zong J, Liu L, Jin S, Zhang Y, Yu F, Meng Q, Tian Q, Wang L, Ren W, Li F, Zhang H, Zhang Y 2021 Nano Lett. 21 8258
[19] Stern M J, René de Cotret L P, Otto M R, Chatelain R P, Boisvert J-P, Sutton M, Siwick B J 2018 Phys. Rev. B 97 165416
[20] Huang P, Zhang Y, Hu K, Qi J, Zhang D, Cheng L 2024 Chin. Phys. B 33 017201
[21] Rogowicz E, Kopaczek J, Kutrowska-Girzycka J, Myronov M, Kudrawiec R, Syperek M 2021 ACS Appl. Electron. Mater. 3 344
[22] D. R, M. F, L. C, M. M, C. T, H. J 2006 phys. Rev. B 74 195208
[23] Song Z, Fan W, Tan C S, Wang Q, Nam D, Zhang D H, Sun G 2019 New J. Phys. 21 073037
[24] Lever L, Ikonić Z, Valavanis A, Kelsall R W, Myronov M, Leadley D R, Hu Y, Owens N, Gardes F Y, Reed G T 2012 J. Appl. Phys. 112 123105
[25] Liu S Q, Yen S T 2019 J. Appl. Phys. 125 245701
[26] Wang X, Li H, Camacho-Aguilera R, Cai Y, Kimerling L C, Michel J, Liu J 2013 Opt. Lett. 38 652
[27] Claussen S A, Tasyurek E, Roth J E, Miller D A B 2010 Opt. Express 18 25596
[28] Zhou X Q, van Driel H M, Mak G 1994 Phys. Rev. B 50 5226
[29] Mak G, van Driel H M 1994 Phys. Rev. B 49 16817
计量
- 文章访问数: 64
- PDF下载量: 4
- 被引次数: 0