搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有电子-双声子相互作用的一维铁磁性介观环的非经典本征态和非经典本征持续电流

罗质华 梁国栋

引用本文:
Citation:

带有电子-双声子相互作用的一维铁磁性介观环的非经典本征态和非经典本征持续电流

罗质华, 梁国栋

Non-classical eigen state and the persistent current in one-dimensional mesoscopic ring with the electron-two-phonon interaction

Luo Zhi-Hua, Liang Guo-Dong
PDF
导出引用
  • 在一维铁磁性织构介观环的基础上, 计及电子-双声子相互作用, 介入了三项非经典效应抑制电子-单声子相互作用引起的量子涨落效应: 1) 跳步电子-单声子相干态关联效应;2) 由压缩相干态引起的声子压缩态-单声子相干态间过程关联效应;3) 声子位移-声子压缩态的表象关联效应.从结果来看, 电子-双声子相互作用明显加强了压缩效应(增大压缩参量), 而跳步电子-单声子相干态关联效应引起本征能量大幅度下降, 持续电流大幅度增加.特别是介入了声子压缩态-单声子相干态间过程关联效应后, 声子压缩参量远大于理想压缩态相应的压缩参量, 有效地抑制了Debye-Waller(D-W)效应.当声子压缩态-单声子相干态间过程关联与声子位移重整化效应结合在一起时, 声子场的压缩将更大幅度地增加, D-W效应(参量wph)将更大幅度地减小, wph wph(0), 从而极大幅度地抑制了电子-单声子相互作用导致的量子涨落效应. 这样一来, 非经典态本征能量En极大幅度地下降, En En(0), 与此同时, 本征持续电流振幅In 则极大幅度地增大, In In(0).
    For the one-dimensional mesoscopic ring with the ferromagnetic texture, to restrain the quantum fluctuations caused by the electron-one-phonon interaction, the non-classical correlation effects are used in our research to solve this puzzling problem, i.e. 1) the hopping electron-displaced phonon state correlation; 2) the process correlation between the phonon squeezed state, and the one-phonon coherent state, originating from the squeezed coherent state of phonon; 3) the renormalization of the phonon displacement. It is found that due to the electron-two phonon interaction, the squeezing effect of phonon is enhanced significantly. Because of the effect of the electron-displaced phonon correlation the non-classical eigen state energy declines significantly and the amplitude of the persistent current increases substantially. Particularly the process correlation between the squeezed phonon state and the one-phonon coherent state is by far the most important contribution to these non-classical effects. First of all, this effect more greatly increases the squeezing effect of phonon field in contrast to the ideal squeezed state. As a result, it will restrain effectively the Debye-Waller effect (factor wph) with wph wph(0). Furthermore, when we combine the effective renormalization of the phonon displacement with the effect of process correlation between the phonon squeezed state and the one-phonon coherent state, the phonon squeezing effect will increases substantially, at the same time, the D-W effect decreased more substantially (wph wph(0), thereby weakening the quantum fluctuation to a bigger degree. With these results, the non-classical eigen energy (En) is much lowered (En En(0)), while the amplitude of eigen persistent current is increased most significantly (In In(0)).
    • 基金项目: 国家自然科学基金(批准号:10574163)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10574163).
    [1]

    Buttiker M, Imry Y, Landauer R 1983 Phys. Lett. A 96 365

    [2]

    Chandrasekhar V, Webb R A, Brady M J, Ketchen M B, GailagherW J, Kleinsasser A 1991 Phys. Rev. Lett. 67 3578

    [3]

    Cheung H F, Gefen Y, Riedel E K, Shih W H 1988 Phys. Rev. B37 6050

    [4]

    Ambegaoker V, Eckern U 1990 Phys. Lett. 65 381

    [5]

    Altshuler B L, Gelfan Y, Imry Y 1991 Phys. Rev. Lett. 66 88

    [6]

    Bouzerar G, Poilblanc D, Monlambaux G 1994 Phys. Rev. B 498258

    [7]

    Lévy L P, Dolan G, Dansmuir J, Bouchait H 1990 Phys. Rev. Lett.64 2074

    [8]

    Mailly D, Chapelier C, Benoid A 1993 Phys. Rev. Lett. 70 2120

    [9]

    Grüner G 1994 Rev. Mod. Phys. 66 1

    [10]

    Ye J F, Ye F, Ding G H 2003 Acta Phys. Sin. 52 468 (in Chinese) [叶剑斐, 叶飞, 丁国辉 2003 物理学报 52 468]

    [11]

    Giamarchi T, Shastry B S 1995 Phys. Rev. B 51 10915

    [12]

    Wang J, Ma Z S 1995 Phys. Rev. B 52 14892

    [13]

    Liang S D, Bai Y H, Beng B 2006 Phys. Rev. B 74 113304

    [14]

    Citro R, Romeo F 2007 Phys. Rev. B 75 073306

    [15]

    Sun Q F, Xie X C, Wang J 2007 Phys. Rev. Lett. 98 196801

    [16]

    Niliionl J, Eckler H P, Johanness O 2007 Phys. Rev. B 76 73408

    [17]

    Zhao H K 2005 Phys. Lett. A 342 468

    [18]

    Liang F Y, Li H M, Li Y J 2006 Acta Phys. Sin. 55 830 (in Chinese) [梁芳营, 李汉明, 李英骏 2006 物理学报 55 830]

    [19]

    Wu S Q, Sun W L, Yu W L,Wang S J 2005 Acta Phys. Sin. 542910 (in Chinese) [吴绍全, 孙威立, 余万伦, 王顺金 2005 物理学报 54 2910]

    [20]

    Chen X W, He D J, Wu S Q, Song K H 2006 Acta Phys. Sin. 554287 (in Chinese) [谌雄文, 贺达江, 吴绍全, 宋克慧 2006 物理学报 55 4287]

    [21]

    Dajkal J, Szopal M, Voardas Z 2004 Phys. Rev. B 69 45305

    [22]

    Sheng J S, Kai C 2006 Phys. Rev. B 74 235315

    [23]

    Wu J N, Chang M C 2005 Phys. Rev. B 72 172405

    [24]

    Wu H 2008 Chin. Phys. B 17 3026

    [25]

    Liu P, Xiong S J 2009 Chin. Phys. B 18 5414

    [26]

    Xu N, Ding JW,Ma M M, Jang X 2010 Chin. Phys. B 19 016101

    [27]

    Ma M M, Ding J W, Chen H B, Xu N 2009 Acta Phys. Sin. 582726 (in Chinese) [马明明, 丁建文, 陈宏波, 徐宁 2009 物理学报 58 2726]

    [28]

    Xu N, Ding JW, Chen H B, MaM M2009 Chin. Phys. B 18 2030

    [29]

    Xu N, Ding JW,MaM M, Tang X 2010 Chin. Phys. B 19 016101

    [30]

    Du J, Wang S X, Yuan A G 2010 Acta Phys. Sin. 59 2767 (inChinese) [杜坚, 王素新, 袁爱国 2010 物理学报 59 2767]

    [31]

    Chen X W, Chen B J, Shi Z G, Song K H 2009 Acta Phys. Sin. 592767 (in Chinese)[谌雄文, 谌宝菊, 施振刚, 宋克慧 2009 物理学报 58 2720]

    [32]

    Luo Z H, Cao X J, Yu C F 2011 Chin. Phys. B 20 067103

    [33]

    Hamutal B S, Ora E W, Imryl Y 2009 Phys. Rev. B 80 02459

    [34]

    Bouchiat H 2008 Mesoscop. Phys. 1 7

    [35]

    Zelgak O M 2008 Phys. Rev. B 78 125305

    [36]

    Feilhauer J, Mo?sko M 2008 Physica E 40 1582

    [37]

    Luo Z H, Liang G D 2011 Acta Phys. Sin. 60 037303 (in Chinese) [罗质华, 梁国栋 2011 物理学报 60 037303]

    [38]

    Loss D, Goldbart P 1992 Phys. Rev. B 45 13544

    [39]

    Kusakabe K, Aoki H 1994 Phys. Rev. Lett. 72 144

    [40]

    Ivanov V A, Zhuravlev MY, Murayama Y, Nakajima S 1996 JETPLett. 64 148

    [41]

    Majernikava E, Koval J 1998 Physica 37 23

    [42]

    Mandel L, Wolf E 1995 Optical Coherence and Guantum Optics(Cambridge University Press) pp1042-1047

    [43]

    Yu C F, Liang G D, Cao X J 2008 Acta Phys. Sin. 4402 (in Chinese) [余超凡, 梁国栋, 曹锡金 2008 物理学报 57 4402]

    [44]

    Wu S S, Ma Z S 1996 Phys. Rev. B 53 16372

  • [1]

    Buttiker M, Imry Y, Landauer R 1983 Phys. Lett. A 96 365

    [2]

    Chandrasekhar V, Webb R A, Brady M J, Ketchen M B, GailagherW J, Kleinsasser A 1991 Phys. Rev. Lett. 67 3578

    [3]

    Cheung H F, Gefen Y, Riedel E K, Shih W H 1988 Phys. Rev. B37 6050

    [4]

    Ambegaoker V, Eckern U 1990 Phys. Lett. 65 381

    [5]

    Altshuler B L, Gelfan Y, Imry Y 1991 Phys. Rev. Lett. 66 88

    [6]

    Bouzerar G, Poilblanc D, Monlambaux G 1994 Phys. Rev. B 498258

    [7]

    Lévy L P, Dolan G, Dansmuir J, Bouchait H 1990 Phys. Rev. Lett.64 2074

    [8]

    Mailly D, Chapelier C, Benoid A 1993 Phys. Rev. Lett. 70 2120

    [9]

    Grüner G 1994 Rev. Mod. Phys. 66 1

    [10]

    Ye J F, Ye F, Ding G H 2003 Acta Phys. Sin. 52 468 (in Chinese) [叶剑斐, 叶飞, 丁国辉 2003 物理学报 52 468]

    [11]

    Giamarchi T, Shastry B S 1995 Phys. Rev. B 51 10915

    [12]

    Wang J, Ma Z S 1995 Phys. Rev. B 52 14892

    [13]

    Liang S D, Bai Y H, Beng B 2006 Phys. Rev. B 74 113304

    [14]

    Citro R, Romeo F 2007 Phys. Rev. B 75 073306

    [15]

    Sun Q F, Xie X C, Wang J 2007 Phys. Rev. Lett. 98 196801

    [16]

    Niliionl J, Eckler H P, Johanness O 2007 Phys. Rev. B 76 73408

    [17]

    Zhao H K 2005 Phys. Lett. A 342 468

    [18]

    Liang F Y, Li H M, Li Y J 2006 Acta Phys. Sin. 55 830 (in Chinese) [梁芳营, 李汉明, 李英骏 2006 物理学报 55 830]

    [19]

    Wu S Q, Sun W L, Yu W L,Wang S J 2005 Acta Phys. Sin. 542910 (in Chinese) [吴绍全, 孙威立, 余万伦, 王顺金 2005 物理学报 54 2910]

    [20]

    Chen X W, He D J, Wu S Q, Song K H 2006 Acta Phys. Sin. 554287 (in Chinese) [谌雄文, 贺达江, 吴绍全, 宋克慧 2006 物理学报 55 4287]

    [21]

    Dajkal J, Szopal M, Voardas Z 2004 Phys. Rev. B 69 45305

    [22]

    Sheng J S, Kai C 2006 Phys. Rev. B 74 235315

    [23]

    Wu J N, Chang M C 2005 Phys. Rev. B 72 172405

    [24]

    Wu H 2008 Chin. Phys. B 17 3026

    [25]

    Liu P, Xiong S J 2009 Chin. Phys. B 18 5414

    [26]

    Xu N, Ding JW,Ma M M, Jang X 2010 Chin. Phys. B 19 016101

    [27]

    Ma M M, Ding J W, Chen H B, Xu N 2009 Acta Phys. Sin. 582726 (in Chinese) [马明明, 丁建文, 陈宏波, 徐宁 2009 物理学报 58 2726]

    [28]

    Xu N, Ding JW, Chen H B, MaM M2009 Chin. Phys. B 18 2030

    [29]

    Xu N, Ding JW,MaM M, Tang X 2010 Chin. Phys. B 19 016101

    [30]

    Du J, Wang S X, Yuan A G 2010 Acta Phys. Sin. 59 2767 (inChinese) [杜坚, 王素新, 袁爱国 2010 物理学报 59 2767]

    [31]

    Chen X W, Chen B J, Shi Z G, Song K H 2009 Acta Phys. Sin. 592767 (in Chinese)[谌雄文, 谌宝菊, 施振刚, 宋克慧 2009 物理学报 58 2720]

    [32]

    Luo Z H, Cao X J, Yu C F 2011 Chin. Phys. B 20 067103

    [33]

    Hamutal B S, Ora E W, Imryl Y 2009 Phys. Rev. B 80 02459

    [34]

    Bouchiat H 2008 Mesoscop. Phys. 1 7

    [35]

    Zelgak O M 2008 Phys. Rev. B 78 125305

    [36]

    Feilhauer J, Mo?sko M 2008 Physica E 40 1582

    [37]

    Luo Z H, Liang G D 2011 Acta Phys. Sin. 60 037303 (in Chinese) [罗质华, 梁国栋 2011 物理学报 60 037303]

    [38]

    Loss D, Goldbart P 1992 Phys. Rev. B 45 13544

    [39]

    Kusakabe K, Aoki H 1994 Phys. Rev. Lett. 72 144

    [40]

    Ivanov V A, Zhuravlev MY, Murayama Y, Nakajima S 1996 JETPLett. 64 148

    [41]

    Majernikava E, Koval J 1998 Physica 37 23

    [42]

    Mandel L, Wolf E 1995 Optical Coherence and Guantum Optics(Cambridge University Press) pp1042-1047

    [43]

    Yu C F, Liang G D, Cao X J 2008 Acta Phys. Sin. 4402 (in Chinese) [余超凡, 梁国栋, 曹锡金 2008 物理学报 57 4402]

    [44]

    Wu S S, Ma Z S 1996 Phys. Rev. B 53 16372

  • [1] 张浩杰, 郭龑强, 郭晓敏, 张健飞, 左冠华, 张玉驰, 张天才. 相位可变压缩相干态的高阶光子反聚束效应. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220574
    [2] 代楠, 邓文基. 扶手椅型石墨烯介观环中的持续电流. 物理学报, 2015, 64(1): 017302. doi: 10.7498/aps.64.017302
    [3] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响. 物理学报, 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [4] 梁修东, 台运娇, 程建民, 翟龙华, 许业军. 量子相空间分布函数与压缩相干态表示间的变换关系. 物理学报, 2015, 64(2): 024207. doi: 10.7498/aps.64.024207
    [5] 李明, 陈鼎汉, 陈翠玲. Ξ型三能级原子玻色-爱因斯坦凝聚体对光场压缩性质的影响. 物理学报, 2013, 62(18): 183201. doi: 10.7498/aps.62.183201
    [6] 李明. 原子玻色-爱因斯坦凝聚体对V型三能级原子激光压缩性质的影响. 物理学报, 2011, 60(6): 063201. doi: 10.7498/aps.60.063201
    [7] 李明, 唐涛, 陈鼎汉. V型三能级原子双模光场系统中光场压缩性质. 物理学报, 2011, 60(7): 073203. doi: 10.7498/aps.60.073203
    [8] 罗质华, 梁国栋. 一维介观环中持续电流的电子-声子相互作用非经典效应. 物理学报, 2011, 60(3): 037303. doi: 10.7498/aps.60.037303
    [9] 杜坚, 王素新, 袁爱国. 特殊结构的多臂量子环的持续电流. 物理学报, 2010, 59(4): 2760-2766. doi: 10.7498/aps.59.2760
    [10] 杜坚, 王素新, 袁爱国. δ势垒对多臂量子环中持续电流的影响. 物理学报, 2010, 59(4): 2767-2774. doi: 10.7498/aps.59.2767
    [11] 马明明, 陈宏波, 丁建文, 徐宁. 二维介观环中持续电流的梯度无序效应. 物理学报, 2009, 58(4): 2726-2730. doi: 10.7498/aps.58.2726
    [12] 杜坚, 王素新, 杨淑敏. 含双δ势垒三臂量子环的透射概率和持续电流. 物理学报, 2009, 58(11): 7926-7933. doi: 10.7498/aps.58.7926
    [13] 赵凤岐, 周炳卿. 外电场作用下纤锌矿氮化物抛物量子阱中极化子能级. 物理学报, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [14] 李 明, 孙久勋. 原子间相互作用对光场和原子激光压缩性质的影响. 物理学报, 2006, 55(6): 2702-2707. doi: 10.7498/aps.55.2702
    [15] 刘竹欣, 方卯发. 压缩相干态通过参量图像放大系统的光学像. 物理学报, 2005, 54(8): 3627-3631. doi: 10.7498/aps.54.3627
    [16] 嵇英华, 刘咏梅, 辛建之, 谢芳森, 雷敏生. 磁场对介观耦合金属环中持续电流的影响. 物理学报, 2004, 53(4): 1207-1210. doi: 10.7498/aps.53.1207
    [17] 吴绍全, 谌雄文, 孙威 立, 王顺金. 嵌入耦合量子点的介观Aharonov-Bohm环内的持续电流. 物理学报, 2004, 53(7): 2336-2341. doi: 10.7498/aps.53.2336
    [18] 叶剑斐, 叶 飞, 丁国辉. 嵌入量子点的介观Aharonov-Bohm环的基态与持续电流. 物理学报, 2003, 52(2): 468-472. doi: 10.7498/aps.52.468
    [19] 周 明, 方家元, 黄春佳. 相互作用原子玻色-爱因斯坦凝聚体诱导的光场压缩效应. 物理学报, 2003, 52(8): 1916-1919. doi: 10.7498/aps.52.1916
    [20] 姚春梅, 郭光灿. 压缩相干态腔场的类自旋GHZ态的制备. 物理学报, 2001, 50(1): 59-62. doi: 10.7498/aps.50.59
计量
  • 文章访问数:  3845
  • PDF下载量:  402
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-30
  • 修回日期:  2011-07-11
  • 刊出日期:  2012-03-05

带有电子-双声子相互作用的一维铁磁性介观环的非经典本征态和非经典本征持续电流

  • 1. 广东第二师范学院物理系, 广州 510303;
  • 2. 暨南大学光电工程系, 广州 510632
    基金项目: 国家自然科学基金(批准号:10574163)资助的课题.

摘要: 在一维铁磁性织构介观环的基础上, 计及电子-双声子相互作用, 介入了三项非经典效应抑制电子-单声子相互作用引起的量子涨落效应: 1) 跳步电子-单声子相干态关联效应;2) 由压缩相干态引起的声子压缩态-单声子相干态间过程关联效应;3) 声子位移-声子压缩态的表象关联效应.从结果来看, 电子-双声子相互作用明显加强了压缩效应(增大压缩参量), 而跳步电子-单声子相干态关联效应引起本征能量大幅度下降, 持续电流大幅度增加.特别是介入了声子压缩态-单声子相干态间过程关联效应后, 声子压缩参量远大于理想压缩态相应的压缩参量, 有效地抑制了Debye-Waller(D-W)效应.当声子压缩态-单声子相干态间过程关联与声子位移重整化效应结合在一起时, 声子场的压缩将更大幅度地增加, D-W效应(参量wph)将更大幅度地减小, wph wph(0), 从而极大幅度地抑制了电子-单声子相互作用导致的量子涨落效应. 这样一来, 非经典态本征能量En极大幅度地下降, En En(0), 与此同时, 本征持续电流振幅In 则极大幅度地增大, In In(0).

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回