搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相位可变压缩相干态的高阶光子反聚束效应

张浩杰 郭龑强 郭晓敏 张健飞 左冠华 张玉驰 张天才

引用本文:
Citation:

相位可变压缩相干态的高阶光子反聚束效应

张浩杰, 郭龑强, 郭晓敏, 张健飞, 左冠华, 张玉驰, 张天才

Higher-order photon antibunching of phase-variable squeezed coherent state

Zhang Hao-Jie, Guo Yan-Qiang, Guo Xiao-Min, Zhang Jian-Fei, Zuo Guan-Hua, Zhang Yu-Chi, Zhang Tian-Cai
PDF
HTML
导出引用
  • 基于扩展的Hanbury Brown-Twiss方案研究相位可变压缩相干态的高阶光子关联及反聚束效应. 通过调控压缩参数r、平移α和压缩相位θ, 压缩相干态的高阶光子关联呈明显的反聚束效应. 在压缩相位θ∈[0,π/2]范围内, 较大α-r参数区间都可获得光场的高阶反聚束效应, 理想情况下最小的反聚束值为g(4) = 6.6352 × 10–5. 研究了背景噪声γ和系统探测效率η对高阶光子反聚束的影响, 在较低探测效率η = 0.1, 背景噪声γ = 10–6时, 仍可获得明显的高阶反聚束效应g(4) = 0.0149, 验证了更高阶光子关联的反聚束效应对实验环境具有较强的鲁棒性. 此外, 研究了相位可变压缩相干态的反聚束效应随探测平均光子数$\langle$n$\rangle $和压缩度S的变化, 在探测平均光子数远小于1、压缩参数10–4以下时, 仍可得到g(n) $\ll $ 0.5的显著的光子反聚束效应. 结果表明利用对压缩相位θ的调控可制备具有明显反聚束效应的压缩相干态, 在量子精密测量及保密通信领域有着潜在的重要应用.
    Squeezed state has important applications in quantum communication, quantum computing, and precision measurement. It has been used to improve the sensitivity and measurement accuracy of gravitational wave detectors. Currently, squeezed state can be prepared by optical parametric oscillators, four-wave mixing, and atom–optomechanical coupling. As a typical non-classical light, the photon statistics of squeezed state usually shows obvious bunching effect, but it can also present photon antibunching effect through interference or photon subtraction operation. More importantly, squeezed coherent state is prepared by performing displacement operation on the squeezed state. In the case of certain displacement and squeezing operations, squeezed coherent state with obvious antibunching effect can be produced. The squeezed coherent state with photon antibunching effect can be employed to achieve super-resolution imaging beyond the diffraction limit, and the state exhibits good particle features which can suppress the multiphoton emission. Then it has become a focus for studying the antibunching effect and quantum statistical properties of squeezed coherent state at a single-photon level.The photon antibunching effect can be characterized by the second-order photon correlation g(2)(τ), which is introduced by Glauber to determine the non-classical properties of the light field. Namely, the second-order photon correlation g(2) can be used as a metric to distinguish different lights. Hanbury Brown-Twiss (HBT) scheme is used to measure the second-order photon correlation experimentally. However, the second-order photon correlation g(2) can reflect only the variance of the photon-number statistical distribution. In order to obtain more information about the photon statistical distribution and non-classical features, it is necessary to measure higher-order photon correlations. Then the higher-order photon correlations for different light fields are studied by extending the traditional HBT scheme and combining with multiplex single-photon detection technology. This method can be applied to ghost imaging, characterization of single-photon detectors, research of exciton dynamics, and analysis of NV center fluorescence emission. However, the research on photon statistics of the squeezed state focuses mainly on the second-order photon correlation and the effect of displacement amplitude on the statistical properties. The effect of squeezed phase on photon antibunching and higher-order photon correlation of squeezed coherent states, with background noise and detection efficiency taken into consideration, have not been investigated.In this paper, we study high-order photon correlations and antibunching effect of phase-variable squeezed coherent state based on an extended HBT scheme. The photon statistics of the squeezed coherent state manifests prominent antibunching effect by adjusting the squeezing parameter r, displacement amplitude α and squeezing phase θ. The antibunching effect of the state can be obtained in a wide range of α-r parameter space when squeezing phase θ∈[0,π/2]. In an ideal case, the minimum antibunching values of the squeezed coherent state are g(2) = 4.006 × 10–4, g(3) = 1.3594 × 10–4 and g(4) = 6.6352 × 10–5. When the detection efficiency η = 0.1 and background noise γ = 10–6, the strong antibunching effect can still be observed, specifically, g(2) = 0.1740, g(3) = 0.0432, g(4) = 0.0149. The results indicate that the antibunching effect of higher-order photon correlation has strong robustness against the experimental environment. In addition, the antibunching effect of the phase-variable squeezed coherent state is studied as a function of the measured mean photon number <n> and the squeezing degree S. When the measured mean photon number is much less than 1 and the squeezing parameter is less than 10–4, a prominent photon anti-bunching effect of g(n) $\ll $ 0.5 can still be obtained. The results show that the control of the squeezing phase θ can be used to prepare the squeezed coherent state with obvious antibunching effect, which has potentially important applications in quantum metrology and secure communication.
      通信作者: 郭龑强, guoyanqiang@tyut.edu.cn ; 张天才, tczhang@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61875147, 62175176, 62075154, U21A6006)、山西省重点研发计划(批准号: 201903D421049)和山西省回国留学人员科研资助项目(批准号: HGKY2019023)资助的课题.
      Corresponding author: Guo Yan-Qiang, guoyanqiang@tyut.edu.cn ; Zhang Tian-Cai, tczhang@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875147, 62175176, 62075154, U21A6006), the Key Research and Development Program of Shanxi Province (Grant No. 201903D421049), and the Shanxi Scholarship Council of China (Grant No. HGKY2019023).
    [1]

    Tian C X, Han D M, Wang Y, and Su X L 2018 Opt. Express 26 29159Google Scholar

    [2]

    Su X L, Wang M H, Yan Z H, Jia X J, Xie C D, Peng K C 2020 Sci. China Inf. Sci. 63 180503Google Scholar

    [3]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [4]

    Hamilton C S, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex L 2017 Phys. Rev. Lett. 119 170501Google Scholar

    [5]

    孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210Google Scholar

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210Google Scholar

    [6]

    Casacio C A, Madsen L S, Terrasson A, Waleed M, Barnscheidt K, Hage B, Taylor M A, Bowen W P 2021 Nature 594 201Google Scholar

    [7]

    McCuller L, Whittle C, Ganapathy D, et al. 2020 Phys. Rev. Lett. 124 171102Google Scholar

    [8]

    Lough J, Schreiber E, Bergamin F, et al. 2021 Phys. Rev. Lett. 126 041102Google Scholar

    [9]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [10]

    Guerrero A. M, Nussenzveig P, Martinelli M, Marino A M, Florez H M 2020 Phys. Rev. Lett. 125 083601Google Scholar

    [11]

    Ma L, Guo H, Sun H X, Liu K, Su B D, Gao J R 2020 Photon. Res. 8 1422Google Scholar

    [12]

    左冠华, 杨晨, 赵俊祥, 田壮壮, 朱诗尧, 张玉驰, 张天才 2020 物理学报 69 014207Google Scholar

    Zuo G H, Yang C, Zhao J X, Tian Z Z, Zhu S Y, Zhang Y C, Zhang T C 2020 Acta Phys. Sin. 69 014207Google Scholar

    [13]

    李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉 2021 物理学报 70 154203Google Scholar

    Li Q H, Yao W X, Li F, Tian L, Wang Y J, Zheng Y H 2021 Acta Phys. Sin. 70 154203Google Scholar

    [14]

    Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar

    [15]

    Zhao Y, Okawachi Y, Jang J K, Ji X C, Lipson M, Gaeta A L 2020 Phys. Rev. Lett. 124 193601Google Scholar

    [16]

    Guo Y Q, Guo X M, Li P, Shen H, Zhang J, Zhang T C 2018 Ann. Phys. 530 1800138Google Scholar

    [17]

    Zhang Y, Menotti M, Tan K, Vaidya V D, Mahler D H, Helt L G, Zatti L, Liscidini M, Morrison B, Vernon Z 2021 Nat. Commun. 12 2233Google Scholar

    [18]

    Lemonde M A, Didier N, Clerk A A 2014 Phys. Rev. A 90 063824Google Scholar

    [19]

    Jiang K, Wei L F 2021 Phys. Lett. A 403 127396Google Scholar

    [20]

    Grosse N B, Symul T, Stobinska M, Ralph T C, Lam P K, 2007 Phys. Rev. Lett. 98 153603Google Scholar

    [21]

    Han Y S, Wu D H, Kasai K, Wang L R, Watanabe M, Zhang Y 2020 J. Opt. 22 025202Google Scholar

    [22]

    Schwartz O, Oron D 2012 Phys. Rev. A 85 033812Google Scholar

    [23]

    Schwartz, O, Levitt J M, Tenne, Ron, Itzhakov S, Deutsch, Z, Oron D 2013 Nano Lett. 13 5832Google Scholar

    [24]

    Matsuoka M, Hirano T 2003 Phys. Rev. A 67 042307Google Scholar

    [25]

    Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312Google Scholar

    [26]

    Glauber R J 1963 Phys. Rev. 130 2529Google Scholar

    [27]

    Glauber R J 1963 Phys. Rev. 131 2766Google Scholar

    [28]

    兰豆豆, 郭晓敏, 彭春生, 姬玉林, 刘香莲, 李璞, 郭龑强 2017 物理学报 66 120502Google Scholar

    Lan D D, Guo X M, Peng C S, Ji Y L, Liu X L, Li P, Guo Y Q 2017 Acta Phys. Sin. 66 120502Google Scholar

    [29]

    Guo Y Q, Peng C S, Ji Y L, Li P, Guo Y Y, Guo X M 2018 Opt. Express 26 5991Google Scholar

    [30]

    Guo X M, Cheng C, Liu T, Fang X, Guo Y Q 2019 Appl. Sci. 9 4907Google Scholar

    [31]

    Luo S, Zhou Y, Zheng H B, Liu J B, Chen H, He Y C, Xu W T, Zhang S H, Li F L, Xu Z 2021 Phys. Rew. A 103 013723Google Scholar

    [32]

    Li J M, Su J, Cui L, Xie T Q, Ou Z Y, Li X Y 2020 Appl. Phys. Lett. 116 204002

    [33]

    Guo Y Q, Yang R C, Li G, Zhang P F, Zhang Y C, Wang J M, Zhang T C 2011 J. Phys. B At. Mol. Opt. Phys. 44 205502Google Scholar

    [34]

    Guo Y Q, Wang L J, Wang Y, Fang X, Zhao T, Guo X M, Zhang T C 2020 J. Opt. 22 095202Google Scholar

    [35]

    Hong P L, Li L M, Liu J J, Zhang G Q 2016 Sci. Rep. 6 23614Google Scholar

    [36]

    Nieves Y, Muller A 2020 Phys. Rev. B 102 155418Google Scholar

    [37]

    Zhou Y, Simon J, Liu J B, Shih Y H 2010 Phys. Rev. A 81 043831Google Scholar

    [38]

    Chen X H, Wu S S, Wu W, Guo W Y, Meng S Y, Sun Z B, Zhai G J, Li M F, Wu L A 2014 J. Opt. Soc. Am. A 31 2105Google Scholar

    [39]

    Hodgman S S, Bu W, Mann S B, Khakimov R I, Truscott A G 2019 Phys. Rew. Lett. 122 233601Google Scholar

    [40]

    Wayne M A, Bienfang J C, Polyakov S V 2017 Opt. Express 25 20352Google Scholar

    [41]

    Amgar D, Yang G L, Tenne R, Oron D 2019 Nano Lett. 19 8741Google Scholar

    [42]

    Tang H J, Ahmed I, Puttapirat P, Wu T H, Lan Y W, Zhang Y P, Li E L 2018 Phys. Chem. Chem. Phys. 20 5721Google Scholar

    [43]

    Lu Y J, Ou Z Y 2002 Phys. Rev. Lett. 88 023601

    [44]

    Boddeda R, Glorieux Q, Bramati A, Pigeon S 2019 J. Phys. B:At. Mol. Opt. Phys. 52 215401Google Scholar

    [45]

    Shih C C 1986 Phys. Rev. D 34 2720Google Scholar

    [46]

    Campos R A, Saleh B E A, Teich M C 1989 Phys. Rev. A 40 1371Google Scholar

  • 图 1  测量相位可变压缩相干态高阶光子关联的双HBT原理示意图

    Fig. 1.  Schematic diagram of double HBT model for measuring high-order photon correlation of phase-variable squeezed state.

    图 2  压缩相位为θ = 0时, 压缩相干态 (a1)—(c1) |ξ(θ), α$\rangle $和(a2)—(c2) |α, ξ(θ)$\rangle $的高阶光子关联随平移振幅α和压缩参数r变化的反聚束结果

    Fig. 2.  High-order photon antibunching of squeezed coherent states (a1)–(c1) |ξ(θ), α$\rangle $ and (a2)–(c2) |α, ξ(θ)$\rangle $ versus displacement amplitude α and squeezing parameter r for squeezing phase θ = 0.

    图 3  当平移振幅α = 0.1时, 相位可变压缩相干态高阶光子关联g(n)随压缩参数r和压缩相位θ变化的反聚束结果

    Fig. 3.  Photon antibunching results of high-order correlation g(n) of phase-variable squeezed coherent state versus squeezing parameter r and squeezing phase θ when displacement amplitude α = 0.1.

    图 4  当压缩参数r = 0.01时, 相位可变压缩相干态的高阶光子关联g(n)随平移振幅α和压缩相位θ变化的反聚束结果

    Fig. 4.  Photon antibunching results of g(n) of phase-variable squeezed coherent state versus displacement amplitude α and squeezing phase θ when squeezing parameter r = 0.01.

    图 5  探测效率分别为η = 0.1, 0.5和1时, 压缩态的(a)二阶、(b)三阶和(c)四阶光子关联最小值随背景噪声γ变化的结果

    Fig. 5.  Minimum second-order (a), third-order (b), and fourth-order (c) photon correlations of squeezed coherent state |ξ, α$\rangle $ versus background noise γ when detection efficiencies η = 0.1, 0.5, and 1.

    图 6  背景噪声γ = 10–6, 探测效率η = 0.5, 压缩度分别为 (a) r = 10–8 (8.6859 × 10–8 dB); (b) r = 10–4 (8.6859 × 10–4 dB); (c) r = 10–1 (8.6859 × 10–1 dB)时, 压缩相干态的g(n)随平均光子数$\langle $n$\rangle $的变化

    Fig. 6.  g(n) of squeezed coherent state versus measured mean photon number $\langle $n$\rangle $ when background noise is γ = 10–6, detection efficiency is η = 0.5, and squeezing degrees are (a) r = 10–8 (8.6859 × 10–8 dB); (b) r = 10–4 (8.6859 × 10–4 dB); (c) r = 10–1 (8.6859 × 10–1 dB) respectively.

    图 7  背景噪声γ = 10–6, 探测效率η = 0.5, 位移分别为 (a) α = 0.01, (b) α = 0.1和(c) α = 1时, 相位可变压缩相干态高阶光子关联g(n)随压缩度S的变化

    Fig. 7.  g(n) of phase-variable squeezed coherent state versus squeezing degree S when background noise is γ = 10–6, detection efficiency is η = 0.5, and displacement amplitudes are (a) α = 0.01, (b) α = 0.1, and (c) α = 1, respectively.

    图 8  探测效率η = 0.5, 压缩参数r = 10–4, 平移振幅分别为 (a) α = 0.01, (b) α = 0.0173和(c) α = 0.0233时, 相位可变压缩相干态的高阶光子关联随压缩相位θ和背景噪声γ变化的分布图

    Fig. 8.  Maps of high-order photon correlations g(n) of phase-variable squeezed coherent state versus squeezing phase θ and background noise γ when detection efficiency is η = 0.5, squeezing parameter is r = 10–4 and displacement amplitudes are (a) α = 0.01, (b) α = 0.0173, and (c) α = 0.0233 respectively.

    图 9  背景噪声γ = 10–6, 压缩参数r = 10–4, 平移振幅分别为 (a) α = 0.01, (b) α = 0.0173和(c) α = 0.0233时, 压缩相干态的高阶光子关联随压缩相位θ和探测效率η变化的分布图

    Fig. 9.  Maps of g(n) of the squeezed coherent state versus squeezing phase θ and detection efficiency η when background noise is γ = 10–6, squeezing parameter is r = 10–4 and displacement amplitudes are (a) α = 0.01, (b) α = 0.0173, and (c) α = 0.0233, respectively.

  • [1]

    Tian C X, Han D M, Wang Y, and Su X L 2018 Opt. Express 26 29159Google Scholar

    [2]

    Su X L, Wang M H, Yan Z H, Jia X J, Xie C D, Peng K C 2020 Sci. China Inf. Sci. 63 180503Google Scholar

    [3]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [4]

    Hamilton C S, Kruse R, Sansoni L, Barkhofen S, Silberhorn C, Jex L 2017 Phys. Rev. Lett. 119 170501Google Scholar

    [5]

    孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210Google Scholar

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210Google Scholar

    [6]

    Casacio C A, Madsen L S, Terrasson A, Waleed M, Barnscheidt K, Hage B, Taylor M A, Bowen W P 2021 Nature 594 201Google Scholar

    [7]

    McCuller L, Whittle C, Ganapathy D, et al. 2020 Phys. Rev. Lett. 124 171102Google Scholar

    [8]

    Lough J, Schreiber E, Bergamin F, et al. 2021 Phys. Rev. Lett. 126 041102Google Scholar

    [9]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [10]

    Guerrero A. M, Nussenzveig P, Martinelli M, Marino A M, Florez H M 2020 Phys. Rev. Lett. 125 083601Google Scholar

    [11]

    Ma L, Guo H, Sun H X, Liu K, Su B D, Gao J R 2020 Photon. Res. 8 1422Google Scholar

    [12]

    左冠华, 杨晨, 赵俊祥, 田壮壮, 朱诗尧, 张玉驰, 张天才 2020 物理学报 69 014207Google Scholar

    Zuo G H, Yang C, Zhao J X, Tian Z Z, Zhu S Y, Zhang Y C, Zhang T C 2020 Acta Phys. Sin. 69 014207Google Scholar

    [13]

    李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉 2021 物理学报 70 154203Google Scholar

    Li Q H, Yao W X, Li F, Tian L, Wang Y J, Zheng Y H 2021 Acta Phys. Sin. 70 154203Google Scholar

    [14]

    Liu S S, Lou Y B, Jing J T 2019 Phys. Rev. Lett. 123 113602Google Scholar

    [15]

    Zhao Y, Okawachi Y, Jang J K, Ji X C, Lipson M, Gaeta A L 2020 Phys. Rev. Lett. 124 193601Google Scholar

    [16]

    Guo Y Q, Guo X M, Li P, Shen H, Zhang J, Zhang T C 2018 Ann. Phys. 530 1800138Google Scholar

    [17]

    Zhang Y, Menotti M, Tan K, Vaidya V D, Mahler D H, Helt L G, Zatti L, Liscidini M, Morrison B, Vernon Z 2021 Nat. Commun. 12 2233Google Scholar

    [18]

    Lemonde M A, Didier N, Clerk A A 2014 Phys. Rev. A 90 063824Google Scholar

    [19]

    Jiang K, Wei L F 2021 Phys. Lett. A 403 127396Google Scholar

    [20]

    Grosse N B, Symul T, Stobinska M, Ralph T C, Lam P K, 2007 Phys. Rev. Lett. 98 153603Google Scholar

    [21]

    Han Y S, Wu D H, Kasai K, Wang L R, Watanabe M, Zhang Y 2020 J. Opt. 22 025202Google Scholar

    [22]

    Schwartz O, Oron D 2012 Phys. Rev. A 85 033812Google Scholar

    [23]

    Schwartz, O, Levitt J M, Tenne, Ron, Itzhakov S, Deutsch, Z, Oron D 2013 Nano Lett. 13 5832Google Scholar

    [24]

    Matsuoka M, Hirano T 2003 Phys. Rev. A 67 042307Google Scholar

    [25]

    Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312Google Scholar

    [26]

    Glauber R J 1963 Phys. Rev. 130 2529Google Scholar

    [27]

    Glauber R J 1963 Phys. Rev. 131 2766Google Scholar

    [28]

    兰豆豆, 郭晓敏, 彭春生, 姬玉林, 刘香莲, 李璞, 郭龑强 2017 物理学报 66 120502Google Scholar

    Lan D D, Guo X M, Peng C S, Ji Y L, Liu X L, Li P, Guo Y Q 2017 Acta Phys. Sin. 66 120502Google Scholar

    [29]

    Guo Y Q, Peng C S, Ji Y L, Li P, Guo Y Y, Guo X M 2018 Opt. Express 26 5991Google Scholar

    [30]

    Guo X M, Cheng C, Liu T, Fang X, Guo Y Q 2019 Appl. Sci. 9 4907Google Scholar

    [31]

    Luo S, Zhou Y, Zheng H B, Liu J B, Chen H, He Y C, Xu W T, Zhang S H, Li F L, Xu Z 2021 Phys. Rew. A 103 013723Google Scholar

    [32]

    Li J M, Su J, Cui L, Xie T Q, Ou Z Y, Li X Y 2020 Appl. Phys. Lett. 116 204002

    [33]

    Guo Y Q, Yang R C, Li G, Zhang P F, Zhang Y C, Wang J M, Zhang T C 2011 J. Phys. B At. Mol. Opt. Phys. 44 205502Google Scholar

    [34]

    Guo Y Q, Wang L J, Wang Y, Fang X, Zhao T, Guo X M, Zhang T C 2020 J. Opt. 22 095202Google Scholar

    [35]

    Hong P L, Li L M, Liu J J, Zhang G Q 2016 Sci. Rep. 6 23614Google Scholar

    [36]

    Nieves Y, Muller A 2020 Phys. Rev. B 102 155418Google Scholar

    [37]

    Zhou Y, Simon J, Liu J B, Shih Y H 2010 Phys. Rev. A 81 043831Google Scholar

    [38]

    Chen X H, Wu S S, Wu W, Guo W Y, Meng S Y, Sun Z B, Zhai G J, Li M F, Wu L A 2014 J. Opt. Soc. Am. A 31 2105Google Scholar

    [39]

    Hodgman S S, Bu W, Mann S B, Khakimov R I, Truscott A G 2019 Phys. Rew. Lett. 122 233601Google Scholar

    [40]

    Wayne M A, Bienfang J C, Polyakov S V 2017 Opt. Express 25 20352Google Scholar

    [41]

    Amgar D, Yang G L, Tenne R, Oron D 2019 Nano Lett. 19 8741Google Scholar

    [42]

    Tang H J, Ahmed I, Puttapirat P, Wu T H, Lan Y W, Zhang Y P, Li E L 2018 Phys. Chem. Chem. Phys. 20 5721Google Scholar

    [43]

    Lu Y J, Ou Z Y 2002 Phys. Rev. Lett. 88 023601

    [44]

    Boddeda R, Glorieux Q, Bramati A, Pigeon S 2019 J. Phys. B:At. Mol. Opt. Phys. 52 215401Google Scholar

    [45]

    Shih C C 1986 Phys. Rev. D 34 2720Google Scholar

    [46]

    Campos R A, Saleh B E A, Teich M C 1989 Phys. Rev. A 40 1371Google Scholar

  • [1] 郭龑强, 王李静, 王宇, 房鑫, 赵彤, 郭晓敏. 光场高阶光子关联的分析与测量. 物理学报, 2020, 69(17): 174204. doi: 10.7498/aps.69.20200325
    [2] 梁修东, 台运娇, 程建民, 翟龙华, 许业军. 量子相空间分布函数与压缩相干态表示间的变换关系. 物理学报, 2015, 64(2): 024207. doi: 10.7498/aps.64.024207
    [3] 李明, 陈鼎汉, 陈翠玲. Ξ型三能级原子玻色-爱因斯坦凝聚体对光场压缩性质的影响. 物理学报, 2013, 62(18): 183201. doi: 10.7498/aps.62.183201
    [4] 罗质华, 梁国栋. 带有电子-双声子相互作用的一维铁磁性介观环的非经典本征态和非经典本征持续电流. 物理学报, 2012, 61(5): 057303. doi: 10.7498/aps.61.057303
    [5] 于文健, 王继锁, 梁宝龙. 非线性相干态光场与二能级原子相互作用的量子特性. 物理学报, 2012, 61(6): 060301. doi: 10.7498/aps.61.060301
    [6] 卢道明. 三参数双模压缩粒子数态的量子特性. 物理学报, 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [7] 李明. 原子玻色-爱因斯坦凝聚体对V型三能级原子激光压缩性质的影响. 物理学报, 2011, 60(6): 063201. doi: 10.7498/aps.60.063201
    [8] 李明, 唐涛, 陈鼎汉. V型三能级原子双模光场系统中光场压缩性质. 物理学报, 2011, 60(7): 073203. doi: 10.7498/aps.60.073203
    [9] 张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲. 反Jaynes-Cummings模型下纠缠相干光场量子特性的研究. 物理学报, 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
    [10] 孟祥国, 王继锁. 有限维奇偶对相干态的非经典性质. 物理学报, 2007, 56(8): 4578-4584. doi: 10.7498/aps.56.4578
    [11] 王忠纯. Tavis-Cummings模型中原子运动时光场的非经典特性. 物理学报, 2006, 55(1): 192-196. doi: 10.7498/aps.55.192
    [12] 李 明, 孙久勋. 原子间相互作用对光场和原子激光压缩性质的影响. 物理学报, 2006, 55(6): 2702-2707. doi: 10.7498/aps.55.2702
    [13] 刘竹欣, 方卯发. 压缩相干态通过参量图像放大系统的光学像. 物理学报, 2005, 54(8): 3627-3631. doi: 10.7498/aps.54.3627
    [14] 周 明, 方家元, 黄春佳. 相互作用原子玻色-爱因斯坦凝聚体诱导的光场压缩效应. 物理学报, 2003, 52(8): 1916-1919. doi: 10.7498/aps.52.1916
    [15] 王继锁, 冯健, 刘堂昆, 詹明生. 算符(f(“非汉字符号”))k正交归一本征态的非经典特性. 物理学报, 2002, 51(9): 1983-1988. doi: 10.7498/aps.51.1983
    [16] 王继锁, 冯健, 刘堂昆, 詹明生. 一种新的奇偶非线性相干态及其量子统计性质. 物理学报, 2002, 51(11): 2509-2513. doi: 10.7498/aps.51.2509
    [17] 汪仲清. 奇偶q-变形相干态的高阶压缩效应. 物理学报, 2001, 50(4): 690-692. doi: 10.7498/aps.50.690
    [18] 姚春梅, 郭光灿. 压缩相干态腔场的类自旋GHZ态的制备. 物理学报, 2001, 50(1): 59-62. doi: 10.7498/aps.50.59
    [19] 冯勋立, 何林生, 柳永亮. 压缩真空态光场中两能级原子的双光子荧光的反聚束效应. 物理学报, 1997, 46(9): 1718-1724. doi: 10.7498/aps.46.1718
    [20] 于肇贤, 王继锁, 刘业厚. 非简谐振子广义奇偶相干态的高阶压缩效应及反聚束效应. 物理学报, 1997, 46(9): 1693-1698. doi: 10.7498/aps.46.1693
计量
  • 文章访问数:  4550
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-05-18
  • 上网日期:  2022-09-22
  • 刊出日期:  2022-10-05

/

返回文章
返回