搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扶手椅型石墨烯介观环中的持续电流

代楠 邓文基

引用本文:
Citation:

扶手椅型石墨烯介观环中的持续电流

代楠, 邓文基

Persistent currents in mesoscopic graphene rings with armchair edges

Dai Nan, Deng Wen-Ji
PDF
导出引用
  • 在紧束缚近似下, 解析求解了扶手椅型边界石墨烯介观环的能量本征值问题, 计算和讨论了不同大小尺寸的介观环中持续电流随Aharonov-Bohm (A-B)磁通的变化, 并证明了能级和持续电流关于磁通变化的周期性和特殊对称性. 研究表明, 持续电流显著地依赖于介观环的几何结构; 零能量附近的能级可以承载较大的持续电流, 而远离零能量的其他能级对持续电流的贡献很小.
    Based on the tight-binding model, the energy spectrum and persistent currents of mesoscopic graphene rings with armchair edges are studied analytically and numerically. Characters of the persistent currents changing with Aharonov-Bohm (A-B) magnetic flux in rings in different geometry are investigated in datail. The periodicity and special symmetry of energy spectrum and persistent currents changing with the magnetic flux are revealed. It is demonstrated that the persistent currents are determined by the geometric structures of the rings; the quantum states with small eigen-energies may carry much larger currents than those quantum states with eigen-energies far away from zero.
    • 基金项目: 国家自然科学基金(批准号: 11004063)和中央高校基本科研业务费专项基金(批准号: 2014ZG0044)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 11004063), and the Fundamental Research Funds for the Central Universities, China(Grant No. 2014ZG0044).
    [1]

    Bttiker M, Imry Y, Landauer R 1983 Phys. Lett. A 96 365

    [2]

    Cheung H F, Gefen Y, Riedel E, Shih W H 1987 Phys. Rev. B 37 11

    [3]

    Cheung H F, Riedel E, Gefen Y 1989 Phys Rev. Lett 62 5

    [4]

    Levy L P, Dolan G, Dunsmuir J, Bouchiat H 1990 Phys. Rev. Lett. 64 2074

    [5]

    Chandrasekhar V, Webb R A, Brady M J, Ketchen M B, Gallagher W J, Kleinsasser A 1991 Phys. Rev. Lett. 67 3578

    [6]

    Bleszynski-Jayich A C, Shanks W E, Peaudecerf B, Ginossar E, Oppen F, Glazman L, Harris J G E 2009 Science 326 272

    [7]

    Deng W J, Liu Y Y, Gong C D 1994 Acta Phys. Sin. 43 03 (in Chinese) [邓文基, 刘有延, 龚昌德 1994 物理学报 43 03]

    [8]

    Louis E, Verge's J A, Chiappe G 1998 Phys. Rev. B 58 11

    [9]

    Lin M F, Chun D S 1998 Phys. Rev. B 57 11

    [10]

    Zhang Z H, Yuan J H, Qiu M, Peng J C, Xiao F L 2006 J. Appl. Phys. 99 104311

    [11]

    Szopa M, Marganska M, Zipper E 2002 Phys. Lett. A 299 593

    [12]

    Huang B L, Chang M C Mou C Y 2012 J. Phys. Condens. Matter 24 245304

    [13]

    Dutta P, Maiti S, Karmakar S N 2012 Euro. phys. J. B 85 4

    [14]

    Szopa M, Margañska M, Zipper E Lisowski M 2004 Phys. Rev. B 70 075406

    [15]

    Ma M M, Ding J W, Xu N 2009 Nanoscale 1 387

    [16]

    Ma M M, Ding J W 2010 Solid State Commun. 150 1196

    [17]

    Chen H B, Xu N, Ding J W 2008 Solid State Commun. 146 12

    [18]

    Bolivar N, Medina E, Berche B 2014 Phys. Rev. B 89 125413

    [19]

    Michetti P Recher P 2011 Phys. Rev. B 83 125420

    [20]

    Benjamin C, Jayannavar A M 2014 Appl. Phys. Lett. 104 053112

    [21]

    Deng W Y, Zhu R, Deng W J 2013 Acta Phys. Sin. 62 067301 (in Chinese) [邓伟胤, 朱瑞, 邓文基 2013 物理学报 62 067301]

    [22]

    Deng W Y, Zhu R, Deng W J 2013 Acta Phys. Sin. 62 087301 (in Chinese) [邓伟胤, 朱瑞, 邓文基 2013 物理学报 62 087301]

    [23]

    Bahamon D A, Pereira A L C, Schulz P A 2009 Phys. Rev. B 79 125414

    [24]

    Russo S, Oostinga J B, Wehenkel D, Heersche H B, Sobhani S S, Vandersypen L M K, Morpurgo A F 2008 Phys. Rev. B 77 085413

    [25]

    Lin M F, Shung K 1995 Phys. Rev. B 52 11

    [26]

    Hatsugai Y, Kohmoto M 1990 Phys. Rev. B 42 13

    [27]

    Guo H M, Feng S P 2012 Chin. Phys. B 21 077303

    [28]

    Shyu F L 2010 J. Phys.: Condens. Matter. 22 025302

    [29]

    Zhang Z H, Yang Z Q, Wang X, Yuan J H, Zhang H, Qiu M, Peng J C 2005 J. Phys.: Condens. Matter. 17 4111

  • [1]

    Bttiker M, Imry Y, Landauer R 1983 Phys. Lett. A 96 365

    [2]

    Cheung H F, Gefen Y, Riedel E, Shih W H 1987 Phys. Rev. B 37 11

    [3]

    Cheung H F, Riedel E, Gefen Y 1989 Phys Rev. Lett 62 5

    [4]

    Levy L P, Dolan G, Dunsmuir J, Bouchiat H 1990 Phys. Rev. Lett. 64 2074

    [5]

    Chandrasekhar V, Webb R A, Brady M J, Ketchen M B, Gallagher W J, Kleinsasser A 1991 Phys. Rev. Lett. 67 3578

    [6]

    Bleszynski-Jayich A C, Shanks W E, Peaudecerf B, Ginossar E, Oppen F, Glazman L, Harris J G E 2009 Science 326 272

    [7]

    Deng W J, Liu Y Y, Gong C D 1994 Acta Phys. Sin. 43 03 (in Chinese) [邓文基, 刘有延, 龚昌德 1994 物理学报 43 03]

    [8]

    Louis E, Verge's J A, Chiappe G 1998 Phys. Rev. B 58 11

    [9]

    Lin M F, Chun D S 1998 Phys. Rev. B 57 11

    [10]

    Zhang Z H, Yuan J H, Qiu M, Peng J C, Xiao F L 2006 J. Appl. Phys. 99 104311

    [11]

    Szopa M, Marganska M, Zipper E 2002 Phys. Lett. A 299 593

    [12]

    Huang B L, Chang M C Mou C Y 2012 J. Phys. Condens. Matter 24 245304

    [13]

    Dutta P, Maiti S, Karmakar S N 2012 Euro. phys. J. B 85 4

    [14]

    Szopa M, Margañska M, Zipper E Lisowski M 2004 Phys. Rev. B 70 075406

    [15]

    Ma M M, Ding J W, Xu N 2009 Nanoscale 1 387

    [16]

    Ma M M, Ding J W 2010 Solid State Commun. 150 1196

    [17]

    Chen H B, Xu N, Ding J W 2008 Solid State Commun. 146 12

    [18]

    Bolivar N, Medina E, Berche B 2014 Phys. Rev. B 89 125413

    [19]

    Michetti P Recher P 2011 Phys. Rev. B 83 125420

    [20]

    Benjamin C, Jayannavar A M 2014 Appl. Phys. Lett. 104 053112

    [21]

    Deng W Y, Zhu R, Deng W J 2013 Acta Phys. Sin. 62 067301 (in Chinese) [邓伟胤, 朱瑞, 邓文基 2013 物理学报 62 067301]

    [22]

    Deng W Y, Zhu R, Deng W J 2013 Acta Phys. Sin. 62 087301 (in Chinese) [邓伟胤, 朱瑞, 邓文基 2013 物理学报 62 087301]

    [23]

    Bahamon D A, Pereira A L C, Schulz P A 2009 Phys. Rev. B 79 125414

    [24]

    Russo S, Oostinga J B, Wehenkel D, Heersche H B, Sobhani S S, Vandersypen L M K, Morpurgo A F 2008 Phys. Rev. B 77 085413

    [25]

    Lin M F, Shung K 1995 Phys. Rev. B 52 11

    [26]

    Hatsugai Y, Kohmoto M 1990 Phys. Rev. B 42 13

    [27]

    Guo H M, Feng S P 2012 Chin. Phys. B 21 077303

    [28]

    Shyu F L 2010 J. Phys.: Condens. Matter. 22 025302

    [29]

    Zhang Z H, Yang Z Q, Wang X, Yuan J H, Zhang H, Qiu M, Peng J C 2005 J. Phys.: Condens. Matter. 17 4111

  • [1] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为. 物理学报, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [2] 罗质华, 梁国栋. 带有电子-双声子相互作用的一维铁磁性介观环的非经典本征态和非经典本征持续电流. 物理学报, 2012, 61(5): 057303. doi: 10.7498/aps.61.057303
    [3] 罗质华, 梁国栋. 一维介观环中持续电流的电子-声子相互作用非经典效应. 物理学报, 2011, 60(3): 037303. doi: 10.7498/aps.60.037303
    [4] 杜坚, 王素新, 袁爱国. 特殊结构的多臂量子环的持续电流. 物理学报, 2010, 59(4): 2760-2766. doi: 10.7498/aps.59.2760
    [5] 杜坚, 王素新, 袁爱国. δ势垒对多臂量子环中持续电流的影响. 物理学报, 2010, 59(4): 2767-2774. doi: 10.7498/aps.59.2767
    [6] 杜坚, 王素新, 杨淑敏. 含双δ势垒三臂量子环的透射概率和持续电流. 物理学报, 2009, 58(11): 7926-7933. doi: 10.7498/aps.58.7926
    [7] 谌雄文, 谌宝菊, 施振刚, 宋克慧. 嵌入T型耦合双量子点介观A-B环系统的显著Fano 效应. 物理学报, 2009, 58(4): 2720-2725. doi: 10.7498/aps.58.2720
    [8] 马明明, 陈宏波, 丁建文, 徐宁. 二维介观环中持续电流的梯度无序效应. 物理学报, 2009, 58(4): 2726-2730. doi: 10.7498/aps.58.2726
    [9] 梁芳营, 李汉明, 李英骏. 超导环电流的研究. 物理学报, 2006, 55(2): 830-833. doi: 10.7498/aps.55.830
    [10] 谌雄文, 贺达江, 吴绍全, 宋克慧. 嵌入平行量子点的非平衡介观环路的极化电流. 物理学报, 2006, 55(8): 4287-4291. doi: 10.7498/aps.55.4287
    [11] 崔元顺. 介观多环耦合系统中的量子电流增强效应. 物理学报, 2005, 54(4): 1799-1803. doi: 10.7498/aps.54.1799
    [12] 吴绍全, 孙威立, 余万伦, 王顺金. 嵌入单量子点Aharonov-Bohm环中的近藤效应. 物理学报, 2005, 54(6): 2910-2917. doi: 10.7498/aps.54.2910
    [13] 嵇英华, 刘咏梅, 辛建之, 谢芳森, 雷敏生. 磁场对介观耦合金属环中持续电流的影响. 物理学报, 2004, 53(4): 1207-1210. doi: 10.7498/aps.53.1207
    [14] 吴绍全, 谌雄文, 孙威 立, 王顺金. 嵌入耦合量子点的介观Aharonov-Bohm环内的持续电流. 物理学报, 2004, 53(7): 2336-2341. doi: 10.7498/aps.53.2336
    [15] 王忠纯. 介观无损耗传输线中电流的量子涨落. 物理学报, 2003, 52(5): 1230-1233. doi: 10.7498/aps.52.1230
    [16] 叶剑斐, 叶 飞, 丁国辉. 嵌入量子点的介观Aharonov-Bohm环的基态与持续电流. 物理学报, 2003, 52(2): 468-472. doi: 10.7498/aps.52.468
    [17] 顾永建. 压缩真空态下介观RLC电路中电荷和电流的量子涨落. 物理学报, 2000, 49(5): 965-968. doi: 10.7498/aps.49.965
    [18] 朱主祥, 郑大昉, 刘有延. 一维介观系统的隧道电流零频散粒噪声谱密度. 物理学报, 1999, 48(2): 302-313. doi: 10.7498/aps.48.302
    [19] 邓文基, 刘有延, 龚昌德. 介观圆筒持续电流——紧束缚近似下的严格解. 物理学报, 1994, 43(3): 438-449. doi: 10.7498/aps.43.438
    [20] 张金如. 爱因斯坦—泡利定理的一些推广. 物理学报, 1964, 20(3): 270-275. doi: 10.7498/aps.20.270
计量
  • 文章访问数:  3690
  • PDF下载量:  434
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-29
  • 修回日期:  2014-08-30
  • 刊出日期:  2015-01-05

扶手椅型石墨烯介观环中的持续电流

  • 1. 华南理工大学物理系, 广州 510641
    基金项目: 国家自然科学基金(批准号: 11004063)和中央高校基本科研业务费专项基金(批准号: 2014ZG0044)资助的课题.

摘要: 在紧束缚近似下, 解析求解了扶手椅型边界石墨烯介观环的能量本征值问题, 计算和讨论了不同大小尺寸的介观环中持续电流随Aharonov-Bohm (A-B)磁通的变化, 并证明了能级和持续电流关于磁通变化的周期性和特殊对称性. 研究表明, 持续电流显著地依赖于介观环的几何结构; 零能量附近的能级可以承载较大的持续电流, 而远离零能量的其他能级对持续电流的贡献很小.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回