搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钽、铁、钨三种体心立方金属裂纹的多尺度模拟及韧脆性分析

杜浩 倪玉山

引用本文:
Citation:

钽、铁、钨三种体心立方金属裂纹的多尺度模拟及韧脆性分析

杜浩, 倪玉山

Multiscale simulations and ductile-brittle analyses of the atomistic cracks in BCC Ta, Fe and W

Du Hao, Ni Yu-Shan
PDF
导出引用
  • 采用多尺度准连续介质法计算模拟了钽、铁、钨三种体心立方(body-centered-cubic,BCC)金属的I型裂纹断裂过程.观察了加载过程中裂纹尖端区域原子的位错、孪晶等塑性变形现象,以及裂纹的脆性开裂和扩展现象.模拟结果表明,不同BCC金属材料的裂纹在相同的加载下有不同韧脆性表现.在一定变形范围内,钽裂纹主要表现出的是裂纹尖端附近区域原子的位错和形变孪晶等塑性变形现象;铁裂纹在变形过程中先后表现出了塑性变形和脆性扩展现象,与实验结果吻合;钨裂纹在变形过程中则主要变现出脆性扩展现象.计算了三种金属材料的广义层错能曲线,得到其不稳定层错能;并分别用两种不同的韧脆性准则,对三种材料断裂模型的韧脆性行为进行分析,计算分析结果与模拟结果一致,从而验证了模拟结果的正确性.
    In order to better understand the fracture mechanism of body-centered-cubic (BCC) metal, the multiscale quasi-continuum method (QC) is employed to analyze the nano-sized mode I cracks of three kinds of BCC metal materials, i.e., Ta, Fe and W. The plastic deformation near the crack tip and the brittle cleavage process are both investigated. The simulation result shows that there are different ductile-brittle behaviors in the cracks of different BCC materials. In the same loading range, the plastic deformation, such as dislocation nucleation and emission, stacking faults and twinning, is the main phenomenon for the crack of BCC-Ta. For the crack of BCC-Fe, plastic deformation and brittle cleavage are observed successively. At the initial stage, plastic deformation is dominant, which is similar to the crack of Ta. As loading increases, the crack begins to propagate, which differs from the crack of Ta. At first, the crack propagates along the initial direction [001], but then turns to [01] as the surface energy of {110} is lower than that of {01}. With the crack propagating, the crack tip is blunted by the plastic deformation, which is consistent with experimental results. As for BCC-W, the crack is found to propagate as brittle cleavage without plastic deformation at first. And the brittle cleavage is dominant all the time, which is a significant difference between W and the other two materials. In addition to the atomistic simulation, some theoretical calculations are also performed to analyze the ductile-brittle behaviors of the cracks. By an atomic slip model, the generalized stacking fault curves of BCC Ta, Fe and W are generated, which exhibit the unstable stacking fault energies of these materials. Based on the unstable stacking fault energy, two theoretical ductile-brittle criterions are analyzed. For the Rice-criterion, the result shows that the dislocation condition is met before cleavage for Ta and Fe, while for W the cleavage occurs before dislocation. For the ductile-brittle-parameter criterion, the result shows that Ta is the most ductile one in the three materials, followed by Fe, and W is the least ductile but the most brittle one. The analysis results of the two theoretical criterions both coincide well with the atomic simulation result, which well validates the simulation and fracture mechanisms.
      通信作者: 倪玉山, niyushan@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11572090)资助的课题.
      Corresponding author: Ni Yu-Shan, niyushan@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11572090).
    [1]

    Giffith A A 1924 Proceedings of the First Congress of Applied Mechanics Delft 1924 p55-63

    [2]

    Miller R, Ortiz M, Phillips R 1998 Engineer. Fract. Mech. 61 427

    [3]

    Cui C B, Beom H G 2014 Mater. Sci. Engineer. A 609 102

    [4]

    Liu X B, Xu Q J, Liu J 2014 The Chinese J. Nonferrous Metals 24 1408 (in Chinese) [刘晓波, 徐庆军, 刘剑2014中国有色金属学报24 1408]

    [5]

    Inga R V, Erling O, Christian T, Diana F 2011 Mater. Sci. Engineer. A 528 5122

    [6]

    Wu Y F, Wang C Y, Guo Y F 2005 Prog. Nat. Sci. 15 206 (in Chinese) [吴映飞, 王崇愚, 郭雅芳2005自然科学进展15 206]

    [7]

    Tadmor E B 1996 The Quasicontinuum Method (Rhode: Brown University Press) pp8-20

    [8]

    Li Y, Siegel D J, Adams J B 2003 Phys. Rev. B 67 125101

    [9]

    Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y, Asta M 2003 Philosophical Magazine 83 3977

    [10]

    Finnis M, Sinclair E 1984 Philosophical Magazine A 50 45

    [11]

    Featherston F H, Neighbours J R 1963 Phys. Rev. 130 1324

    [12]

    Michal L, Anna M, Alena U, Jaroslav P, Pavel L 2016 Int. J. Fatigue 87 63

    [13]

    Rice J R, Beltz G E 1994 J. Mech. Phys. Solids 42 333

    [14]

    Tadmor E B, Hai S 2003 Mech. Phys. Solids 51 765

    [15]

    Vitek V 1968 Philosophical Magazine 18 773

    [16]

    Zimmerman J A, Gao H J, Abraham F F 2000 Model. Simul. Mater. Sci. Engineer. 8 103

    [17]

    Lu G, Kioussis 2000 Phys. Rev. B 62 3099

    [18]

    Rice J R 1992 Mech. Phys. Solids 40 239

    [19]

    Wang S G, Tian E K, Lung C W 2000 J. Phys. Chem. Solids 61 1295

    [20]

    Mei J F, Ni Y S, Li J W 2011 Int. J. Solids Struct. 48 3054

    [21]

    Wang Z Q, Chen S H 2009 Advanced Fracture Mechanics (Beijing: Science Press) p14-16(in Chinese) [王自强, 陈少华2009高等断裂力学(北京: 科学出版社)第14–16页]

  • [1]

    Giffith A A 1924 Proceedings of the First Congress of Applied Mechanics Delft 1924 p55-63

    [2]

    Miller R, Ortiz M, Phillips R 1998 Engineer. Fract. Mech. 61 427

    [3]

    Cui C B, Beom H G 2014 Mater. Sci. Engineer. A 609 102

    [4]

    Liu X B, Xu Q J, Liu J 2014 The Chinese J. Nonferrous Metals 24 1408 (in Chinese) [刘晓波, 徐庆军, 刘剑2014中国有色金属学报24 1408]

    [5]

    Inga R V, Erling O, Christian T, Diana F 2011 Mater. Sci. Engineer. A 528 5122

    [6]

    Wu Y F, Wang C Y, Guo Y F 2005 Prog. Nat. Sci. 15 206 (in Chinese) [吴映飞, 王崇愚, 郭雅芳2005自然科学进展15 206]

    [7]

    Tadmor E B 1996 The Quasicontinuum Method (Rhode: Brown University Press) pp8-20

    [8]

    Li Y, Siegel D J, Adams J B 2003 Phys. Rev. B 67 125101

    [9]

    Mendelev M I, Han S, Srolovitz D J, Ackland G J, Sun D Y, Asta M 2003 Philosophical Magazine 83 3977

    [10]

    Finnis M, Sinclair E 1984 Philosophical Magazine A 50 45

    [11]

    Featherston F H, Neighbours J R 1963 Phys. Rev. 130 1324

    [12]

    Michal L, Anna M, Alena U, Jaroslav P, Pavel L 2016 Int. J. Fatigue 87 63

    [13]

    Rice J R, Beltz G E 1994 J. Mech. Phys. Solids 42 333

    [14]

    Tadmor E B, Hai S 2003 Mech. Phys. Solids 51 765

    [15]

    Vitek V 1968 Philosophical Magazine 18 773

    [16]

    Zimmerman J A, Gao H J, Abraham F F 2000 Model. Simul. Mater. Sci. Engineer. 8 103

    [17]

    Lu G, Kioussis 2000 Phys. Rev. B 62 3099

    [18]

    Rice J R 1992 Mech. Phys. Solids 40 239

    [19]

    Wang S G, Tian E K, Lung C W 2000 J. Phys. Chem. Solids 61 1295

    [20]

    Mei J F, Ni Y S, Li J W 2011 Int. J. Solids Struct. 48 3054

    [21]

    Wang Z Q, Chen S H 2009 Advanced Fracture Mechanics (Beijing: Science Press) p14-16(in Chinese) [王自强, 陈少华2009高等断裂力学(北京: 科学出版社)第14–16页]

  • [1] 董烨, 朱特, 宋亚敏, 叶凤娇, 张鹏, 杨启贵, 刘福雁, 陈雨, 曹兴忠. 低活化马氏体钢中位错对氦辐照缺陷的影响. 物理学报, 2023, 72(18): 187801. doi: 10.7498/aps.72.20230694
    [2] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟. 物理学报, 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [3] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [4] 祁科武, 赵宇宏, 郭慧俊, 田晓林, 侯华. 温度对小角度对称倾斜晶界位错运动影响的晶体相场模拟. 物理学报, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [5] 高英俊, 秦河林, 周文权, 邓芊芊, 罗志荣, 黄创高. 高温应变下的晶界湮没机理的晶体相场法研究. 物理学报, 2015, 64(10): 106105. doi: 10.7498/aps.64.106105
    [6] 邵宇飞, 杨鑫, 李久会, 赵星. Cu刃型扩展位错附近局部应变场的原子模拟研究. 物理学报, 2014, 63(7): 076103. doi: 10.7498/aps.63.076103
    [7] 杨晓京, 方聪聪. 球形压头与单晶铝材料纳米接触过程的多尺度分析. 物理学报, 2013, 62(18): 180702. doi: 10.7498/aps.62.180702
    [8] 陈丽群, 于涛, 彭小芳, 刘健. 难熔元素钨在NiAl位错体系中的占位及对键合性质的影响. 物理学报, 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
    [9] 李联和, 刘官厅. 一维六方准晶中螺形位错与楔形裂纹的相互作用. 物理学报, 2012, 61(8): 086103. doi: 10.7498/aps.61.086103
    [10] 方步青, 卢果, 张广财, 许爱国, 李英骏. 铜晶体中类层错四面体的结构及其演化. 物理学报, 2009, 58(7): 4862-4871. doi: 10.7498/aps.58.4862
    [11] 张曾, 张荣, 谢自力, 刘斌, 修向前, 李弋, 傅德颐, 陆海, 陈鹏, 韩平, 郑有炓, 汤晨光, 陈涌海, 王占国. 厚度对MOCVD生长InN薄膜位错特性与光电性质的影响. 物理学报, 2009, 58(5): 3416-3420. doi: 10.7498/aps.58.3416
    [12] 张 杨, 张建华, 文玉华, 朱梓忠. 含圆孔纳米薄膜在拉伸加载下变形机理的原子级模拟研究. 物理学报, 2008, 57(11): 7094-7099. doi: 10.7498/aps.57.7094
    [13] 王英龙, 魏同茹, 刘保亭, 邓泽超. 外延PbZr0.4Ti0.6O3薄膜厚度对其铁电性能的影响. 物理学报, 2007, 56(5): 2931-2936. doi: 10.7498/aps.56.2931
    [14] 张晓波, 张 巍, 舒方杰, 李永平. 相反拓扑指数的Laguerre-Gaussian模的产生和模间相互作用的实验研究. 物理学报, 2007, 56(1): 213-217. doi: 10.7498/aps.56.213
    [15] 孙 蔚, 王清周, 韩福生. 石墨颗粒/CuAlMn形状记忆合金复合材料中的位错内耗峰. 物理学报, 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
    [16] 江慧丰, 张青川, 陈学东, 范志超, 陈忠家, 伍小平. 位错与溶质原子间动态相互作用的数值模拟研究. 物理学报, 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [17] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, 2006, 55(9): 4767-4773. doi: 10.7498/aps.55.4767
    [18] 张建民, 吴喜军, 黄育红, 徐可为. fcc金属层错能的EAM法计算. 物理学报, 2006, 55(1): 393-397. doi: 10.7498/aps.55.393
    [19] 罗诗裕, 邵明珠, 韦洛霞, 刘曾荣. 位错动力学与系统的全局分叉. 物理学报, 2004, 53(6): 1940-1945. doi: 10.7498/aps.53.1940
    [20] 龙期威, 王屴. 位错在裂纹顶端的象力. 物理学报, 1984, 33(9): 1337-1340. doi: 10.7498/aps.33.1337
计量
  • 文章访问数:  6135
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-14
  • 修回日期:  2016-07-07
  • 刊出日期:  2016-10-05

/

返回文章
返回