搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

难熔元素钨在NiAl位错体系中的占位及对键合性质的影响

陈丽群 于涛 彭小芳 刘健

引用本文:
Citation:

难熔元素钨在NiAl位错体系中的占位及对键合性质的影响

陈丽群, 于涛, 彭小芳, 刘健

The site preference of refractory element W in NiAl dislocation core and its effects on bond characters

Chen Li-Qun, Yu Tao, Peng Xiao-Fang, Liu Jian
PDF
导出引用
  • 用第一性原理离散变分方法研究了难熔元素钨(W)在金 属间化合物NiAl(010)刃型位错体系中的占位以及对键合性质的影响, 计算了纯位错体系和掺杂体系的能量参数(结合能、 杂质偏聚能及原子间相互作用能)、 态密度和电荷密度分布. 体系结合能和杂质偏聚能的计算结果表明: 难熔元素W优先占据Al格位. 此外,由于难熔元素W的4d轨道与近邻基体原子Ni的3d轨道和Al的3p轨道的杂化, 使得掺杂体系中难熔元素W与近邻基体原子间的相互作用能加强; 同时难熔元素W与位错芯区近邻基体原子间有较多的电荷聚集, 这表明W与近邻基体原子间形成了较强的化学键. 难熔元素W对NiAl化合物的能量及电子结构有较大的影响, 从而影响位错的运动及NiAl金属间化合物的性能.
    The site occupancy of refractory element W in the (010) edge dislocations of NiAl intermetallic compounds and its effect on NiAl properties are studied by the first-principles discrete variational method. The energetic parameters (binding energy, the impurity segregation energy and the interatomic energy), the density of states and the charge density are calculated respectively for the clean dislocation system and the doped dislocation system. The calculated results of the binding energy and the impurity segregation energy suggest that W exhibits a strong Al site preference. The interactions between the refractory elements W and the neighbouring host atoms are strengthened due mainly to the hybridization of 4d orbital of impurity atom and 3d orbital of host Ni atoms (3p orbital of host Al atom). Meanwhile, some charge accumulations appear between impurity atom and neighbouring host atoms in the dislocation core, indicating that strong bonding states are formed between the impurity atom and its neighbouring host atoms. The refractory element W greatly affects the energy and the electronic structure of NiAl intermetallic compounds, and in turn influences the motion of dislocation and the properties of NiAl compound.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CB606402 )资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011CB606402).
    [1]

    Guo J T, Ren W L, Zhou J 2002 Acta Metall. Sin. 38 667 (in Chinese) [郭建亭, 任维丽, 周健 2002 金属学报 38 667]

    [2]

    Darolia R 1991 JOM 43 44

    [3]

    George E P, Liu C T 1990 J. Mater. Res. 5 745

    [4]

    Tang L Z, Zhang Z G, Li S S, Gong S K 2010 Trans. Nonferrous Met. Soc. China 20 212

    [5]

    Shang J X, Yu X Y 2008 Acta Phys. Sin. 57 2380 (in Chinese) [尚家香, 喻显扬 2008 物理学报 57 2380]

    [6]

    Shang J X, Yu T B 2009 Acta Phys. Sin. 58 1179 (in Chinese) [尚家香, 于潭波 2009 物理学报 58 1179]

    [7]

    Djajaputra D, Cooper B R 2002 Phys. Rev. B 66 205108

    [8]

    Takasugi T, Kishino J, Hanada S 1993 Acta MetAll. Mater. 41 1009

    [9]

    Hu X L, Zhang Y, Lu G H, Wang T 2009 J Phys. Condens Matter. 21 025402

    [10]

    Pollock T M, Lu D C, Shi X, Eow K 2001 Mater. Sci. Eng. A 317 241

    [11]

    Yang C 2006 Int. J. Mech. Sci. 48 950

    [12]

    Ghosh B, Crimp M A 1997 Mater. Sci. Eng. A 239-240 142

    [13]

    Ebrahimi F, Shrivastava S 1998 Acta Mater. 46 1493

    [14]

    Kontsevoi O Yu, Gornostyrev Yu N, Freeman A J, Katsnelson M I., Trefilov A V 2001 Philos. Mag. Lett. 81 455

    [15]

    Chen L Q, Yu T 2011 Sci. China Physics, Mechanics & Astronomy 54 815

    [16]

    Chen L Q, Qiu Z C 2011 Defect and Diffusion Forum 318 23

    [17]

    Wang Y L, Jones I P, Smallman R E 2006 Intermetallics 14 800

    [18]

    Fan X J, Liu F Q, Yin D 2005 Chin. Phys. 14 2287

    [19]

    Feng H J, Liu F M 2008 Chin. Phys. Lett. 25 671

    [20]

    Li Q X, Li Z Y, Zhu Q S, Yang J L, Hou J G 2001 Acta Phys. Sin. 50 1877 (in Chinese) [李群祥, 李震宇, 朱清时, 杨金龙, 侯建国 2001 物理学报 50 1877]

    [21]

    Delley B 1991 J. Chem. Phys. 94 7245

    [22]

    Delley B 1990 J. Chem. Phys. 92 508

    [23]

    Guenzburger D, Ellis D E 1992 Phys. Rev. B 45 285

    [24]

    Chen L Q, Wang C Y, Yu T 2006 J. Appl. Phys. 100 023715

    [25]

    Wang S Y, Wang C Y, Sun J H, Duan W H, Zhao D L 2001 Phys. Rev. B 65 035101

    [26]

    Dang H L, Wang C Y, Yu T 2007 J. Appl. Phys. 101 083702

    [27]

    Yan J A, Wang C Y, Duan W H, Wang S Y 2004 Phys. Rev. B 69 214110

    [28]

    Song Y, Guo Z X, Yang R, Li D 2001 Acta Mater. 49 1647

    [29]

    Wang C Y 1995 Defect Diffus. Forum 125-126 79

    [30]

    Delley B, Ellis D E, Freeman A J, Bearends E J, Pos D 1983 Phys. Rev. B 27 2132

  • [1]

    Guo J T, Ren W L, Zhou J 2002 Acta Metall. Sin. 38 667 (in Chinese) [郭建亭, 任维丽, 周健 2002 金属学报 38 667]

    [2]

    Darolia R 1991 JOM 43 44

    [3]

    George E P, Liu C T 1990 J. Mater. Res. 5 745

    [4]

    Tang L Z, Zhang Z G, Li S S, Gong S K 2010 Trans. Nonferrous Met. Soc. China 20 212

    [5]

    Shang J X, Yu X Y 2008 Acta Phys. Sin. 57 2380 (in Chinese) [尚家香, 喻显扬 2008 物理学报 57 2380]

    [6]

    Shang J X, Yu T B 2009 Acta Phys. Sin. 58 1179 (in Chinese) [尚家香, 于潭波 2009 物理学报 58 1179]

    [7]

    Djajaputra D, Cooper B R 2002 Phys. Rev. B 66 205108

    [8]

    Takasugi T, Kishino J, Hanada S 1993 Acta MetAll. Mater. 41 1009

    [9]

    Hu X L, Zhang Y, Lu G H, Wang T 2009 J Phys. Condens Matter. 21 025402

    [10]

    Pollock T M, Lu D C, Shi X, Eow K 2001 Mater. Sci. Eng. A 317 241

    [11]

    Yang C 2006 Int. J. Mech. Sci. 48 950

    [12]

    Ghosh B, Crimp M A 1997 Mater. Sci. Eng. A 239-240 142

    [13]

    Ebrahimi F, Shrivastava S 1998 Acta Mater. 46 1493

    [14]

    Kontsevoi O Yu, Gornostyrev Yu N, Freeman A J, Katsnelson M I., Trefilov A V 2001 Philos. Mag. Lett. 81 455

    [15]

    Chen L Q, Yu T 2011 Sci. China Physics, Mechanics & Astronomy 54 815

    [16]

    Chen L Q, Qiu Z C 2011 Defect and Diffusion Forum 318 23

    [17]

    Wang Y L, Jones I P, Smallman R E 2006 Intermetallics 14 800

    [18]

    Fan X J, Liu F Q, Yin D 2005 Chin. Phys. 14 2287

    [19]

    Feng H J, Liu F M 2008 Chin. Phys. Lett. 25 671

    [20]

    Li Q X, Li Z Y, Zhu Q S, Yang J L, Hou J G 2001 Acta Phys. Sin. 50 1877 (in Chinese) [李群祥, 李震宇, 朱清时, 杨金龙, 侯建国 2001 物理学报 50 1877]

    [21]

    Delley B 1991 J. Chem. Phys. 94 7245

    [22]

    Delley B 1990 J. Chem. Phys. 92 508

    [23]

    Guenzburger D, Ellis D E 1992 Phys. Rev. B 45 285

    [24]

    Chen L Q, Wang C Y, Yu T 2006 J. Appl. Phys. 100 023715

    [25]

    Wang S Y, Wang C Y, Sun J H, Duan W H, Zhao D L 2001 Phys. Rev. B 65 035101

    [26]

    Dang H L, Wang C Y, Yu T 2007 J. Appl. Phys. 101 083702

    [27]

    Yan J A, Wang C Y, Duan W H, Wang S Y 2004 Phys. Rev. B 69 214110

    [28]

    Song Y, Guo Z X, Yang R, Li D 2001 Acta Mater. 49 1647

    [29]

    Wang C Y 1995 Defect Diffus. Forum 125-126 79

    [30]

    Delley B, Ellis D E, Freeman A J, Bearends E J, Pos D 1983 Phys. Rev. B 27 2132

计量
  • 文章访问数:  2038
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-22
  • 修回日期:  2013-02-04
  • 刊出日期:  2013-06-05

难熔元素钨在NiAl位错体系中的占位及对键合性质的影响

  • 1. 中南林业科技大学理学院, 长沙 410004;
  • 2. 钢铁研究总院功能材料研究所, 北京 100081
    基金项目: 

    国家重点基础研究发展计划(批准号: 2011CB606402 )资助的课题.

摘要: 用第一性原理离散变分方法研究了难熔元素钨(W)在金 属间化合物NiAl(010)刃型位错体系中的占位以及对键合性质的影响, 计算了纯位错体系和掺杂体系的能量参数(结合能、 杂质偏聚能及原子间相互作用能)、 态密度和电荷密度分布. 体系结合能和杂质偏聚能的计算结果表明: 难熔元素W优先占据Al格位. 此外,由于难熔元素W的4d轨道与近邻基体原子Ni的3d轨道和Al的3p轨道的杂化, 使得掺杂体系中难熔元素W与近邻基体原子间的相互作用能加强; 同时难熔元素W与位错芯区近邻基体原子间有较多的电荷聚集, 这表明W与近邻基体原子间形成了较强的化学键. 难熔元素W对NiAl化合物的能量及电子结构有较大的影响, 从而影响位错的运动及NiAl金属间化合物的性能.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回