搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含铝强化奥氏体钢在550 ℃液态铅铋中的腐蚀行为

甘舒匀 徐帅 李炳生 柴林江 陈黎明 何晓珣 汪利 刘思捷 文春梅 李佳奇 伍忠政

引用本文:
Citation:

含铝强化奥氏体钢在550 ℃液态铅铋中的腐蚀行为

甘舒匀, 徐帅, 李炳生, 柴林江, 陈黎明, 何晓珣, 汪利, 刘思捷, 文春梅, 李佳奇, 伍忠政

Corrosion behavior of aluminum reinforced austenitic steel in liquid lead bismuth at 550 ℃

Gan Shu-Yun, Xu Shuai, Li Bing-Sheng, Chai Lin-Jiang, Chen Li-Ming, He Xiao-Xun, Wang Li, Liu Si-Jie, Wen Chun-Mei, Li Jia-Qi, Wu Zhong-Zheng
PDF
HTML
导出引用
  • 先进铅冷快堆和加速器驱动次临界系统商业化的关键材料问题是结构材料与铅基冷却剂之间的相容性问题, 结构钢材料需要在高温液态铅铋共晶中具有优异的抗腐蚀能力. 含铝强化奥氏体钢(alumina-forming austenite steel, AFA钢)因其表面可以形成Al2O3膜而在极端环境中具有良好的耐蚀性能. 本文研究了降低Ni元素成分和高温预氧化对AFA钢耐铅铋腐蚀性能的影响, 利用扫描电子显微镜、能量色散X射线光谱仪、X射线衍射技术, 对AFA钢在550 ℃液态铅铋饱和溶氧条件下腐蚀600 h的氧化层形貌及结构进行表征. 结果表明: 降低合金中Ni含量和高温预氧化处理都会促进样品表面形成保护性Al2O3氧化膜, 进而降低腐蚀层厚度, 提升材料耐铅铋腐蚀性能.
    The key material issue for the commercialization of advanced lead cooled fast reactors and accelerator driven subcritical systems is the compatibility between structural materials and lead based coolants. Structural steel materials require excellent corrosion resistance in high-temperature liquid lead bismuth eutectic (LBE) alloy. Aluminum forming austenitic steel (AFA steel) has excellent corrosion resistance in extreme environments due to its ability to form an Al2O3 film on its surface. However, excessively high Ni elements are more easily dissolved or oxidized in LBE than Fe and Cr elements. Therefore, this work investigates the effect of reducing Ni element composition (25-Ni steel and 18-Ni steel) on the corrosion resistance of steel in LBE. Surface treatment can protect the substrate from corrosion to some extent, so herein we explore whether it has a protective effect on AFA steel in LBE by generating Al2O3 through high-temperature pre oxidation. The morphology and structure of the oxide layer of AFA steel corroded for 600 h in LBE with saturated dissolved oxygen at 550 ℃ are characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and other technologies. The results indicate that the oxide film formed after corrosion of 18-Ni steel is thinner than that after corrosion of 25-Ni steel. Performing high-temperature pre oxidation is beneficial to forming a protective Al2O3 oxide film on the surface of the sample, thereby reducing the thickness of the oxide layer and improving the material’s LBE corrosion resistance. The reduction in thickness of the oxide layer generated after pre oxidation of 18-Ni steel is greater than that of 25-Ni steel, so the anti-corrosion effect of 18-Ni steel after pre oxidation is better than that of 25-Ni steel.
      通信作者: 徐帅, shuaixu2020@swust.edu.cn
    • 基金项目: 高等学校博士学科点专项科研基金 (批准号: 20zx7104)资助的课题.
      Corresponding author: Xu Shuai, shuaixu2020@swust.edu.cn
    • Funds: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20zx7104).
    [1]

    Lu Y H, Song Y Y, Chen S H, Rong L J 2016 Acta Met. Sin. 52 298

    [2]

    Schroer C, Wedemeyer O, Novotny J, Skrypnik A, Konys J 2014 Corros. Sci. 84 113Google Scholar

    [3]

    Yamaki E, Ginestar K , Martinelli L 2011 Corros. Sci. 53 3075

    [4]

    Sapundjiev D, Dyck V S, Bogaerts W 2006 Corros. Sci. 48 577Google Scholar

    [5]

    Kurata Y, Futakawa M, Saito S 2005 J. Nucl. Mater. 343 333Google Scholar

    [6]

    Anderoglu O, Byun T S, Toloczko M, Maloy S A 2012 Metall. Mater. Trans. A 44 70

    [7]

    陈灵芝, 周张健, Schroer C 2020 材料导报 34 05098Google Scholar

    Chen L Z, Zhou Z J, Schroer C 2020 Mater. Rep. 34 05098Google Scholar

    [8]

    Gong X, Marmy P, Qin L, Verlinden B, Wevers M, Seefeldt M 2014 Mater. Sci. Eng. A 618 406Google Scholar

    [9]

    Vogt J , Proriol-Serre I 2013 Procedia Eng. 55 814

    [10]

    Gong X, Li R, Sun M Z, Ren Q S, Liu T, Short M P 2016 J. Nucl. Mater. 482 225

    [11]

    梁娜, 姚存峰, 龙斌, 付晓钢 2022 材料导报 36 21090168Google Scholar

    Liang N, Yao C F, Long B, Fu X G 2022 Mater. Rep. 36 21090168Google Scholar

    [12]

    Kurata Y, Futakawa M, Saito S 2008 J. Nucl. Mater. 373 167

    [13]

    鞠娜, 雷玉成, 陈钢, 朱强, 李天庆, 王丹 2019 原子能科学技术 53 432Google Scholar

    Ju N, Lei Y C, Chen G, Zhu Q, Li T Q 2019 Atomic Energy Sci. Techno. 53 432Google Scholar

    [14]

    Brady M P, Yamamoto Y, Santella M L, Pint B A 2007 Scripta Mater. 57 1119

    [15]

    Yamamoto Y, Takeyama M, Lu Z P, Liu C T, Evans N D, Maziasz P J, Brady M P 2008 Nature 30 191

    [16]

    Lutz B S, Yanar N M, Holcomb G R, Meier G H 2017 Oxid. Met. 87 587

    [17]

    Gao Q Z, Liu Z Y, Li H J, Zhang H L, Jiang C C, Hao A M, Qu F, Lin X P 2021 J. Mater. Sci. Technol. 68 99

    [18]

    Meng H J, Wang J, Wang L, Fang X D, Dong N, Zhang C L, Han P D 2020 Mater. Charact. 163 110233Google Scholar

    [19]

    Shi H, Tang C C, Jianu A, Fetzer R, Weisenburger A, Steinbrueck M, Grosse M, Stieglitz R, Müller G 2020 Corros. Sci. 170 108654Google Scholar

    [20]

    Shen L, Wu B J, Zhao K, Peng H B Wen Y H 2021 Corros. Sci. 191 109754Google Scholar

    [21]

    Yamamoto Y, Brady M P, Ren Q Q, Poplawsky J D, Hoelzer D T, Lance M J 2022 JOM 74 1462

    [22]

    Yamamoto Y, Ren Q Q, Brady M P 2022 Metals 12 717-7Google Scholar

    [23]

    Zhao W X, Jiang S H, Liu W H, Peng X Y, Wang H, Wu Y, Liu X J, Lu Z P 2022 Mater. Sci. Eng. A 857 143995Google Scholar

    [24]

    经济合作与发展组织/核能署 著 (戎利建, 张玉妥, 陆善平, 陈星秋, 王培, 熊超, 叶中飞, 李依依 译) 2007 铅与铅铋共晶合金手册 (北京: 科学出版社)第72—73页

    OECD/NEA (translated by Rong L J, Zhang Y T, Lu S P, Chen X Q, Wang P, Xiong C, Ye Z F, Li Y Y) 2007 Handbook on Lead–Bismuth Eutectic Alloy and Lead (Beijing: Science Press) pp72–73

    [25]

    Brady M P, Yamamoto Y, Santella M L, Maziasz P J, Pint B A, Liu C T, Lu Z P, Bei H 2008 JOM 60 12

    [26]

    Yamamoto Y, Takeyama M, Lu Z P, Liu C T, Evans N D, Maziasz P J, Brady M P 2008 Intermetallics 16 458

    [27]

    程晓农, 姚永泉, 李冬升, 罗锐, 郑琦, 唐桢丁 2017 金属热处理 42 75

    Chen X N, Yao Y Q, Li D S, Luo R, Zheng Q, Tang Z D 2017 Heat Treat. Met. 42 75

    [28]

    Hosemann P, Bai S, Bickel J, Qiu J 2021 JOM 73 4014

    [29]

    Liu Y C, Chen S M, Ouyang F Y, Kai J J 2018 J. Nucl. Mater. 505 13

    [30]

    Chen L Z, Tsisar V, Wang M, Schroer C, Zhou Z J 2021 Corros. Sci. 189 109591Google Scholar

    [31]

    陈灵芝 2021 博士学位论文 (北京: 北京科技大学)

    Chen L Z 2021 Ph. D. Dissertation (Beijing: University of Science and Technology

    [32]

    Wang M, Sun Y D, Feng J K , Zhang R Q, Tang R, Zhou Z J 2016 Int. J. Min. Met. Mater. 23 316

    [33]

    周德强 2014 博士学位论文 (北京: 北京科技大学)

    Zhou D Q 2014 Ph. D. Dissertation (Beijing: University of Science and Technology

    [34]

    Ejenstam J, Szakálos P 2015 J. Nucl. Mater. 461 164Google Scholar

    [35]

    Muller G, Heinzel A, Konys J, Schumacher G, Weisenburger A, Zimmermann F, Engelko V, Rusanov A, Markov V 2002 J. Nucl. Mater. 301 42

    [36]

    熊静, 邓平, 高军, 赵永福 2022 科学技术创新 10 55

    Xiong J, Deng P, Gao J, Zhao Y F 2022 Sci. Technol. Inno. 10 55

    [37]

    王军健, 李华鑫, 李红菊, 郑文健, 闾川阳, 马英鹤, 任森栋, 包士毅, 贺艳明, 杨建国 2023 强激光与粒子束 35 056001

    Wang J J, Li H X, Li H J, Zheng W J, Lv C Y, Ma Y H, Ren S D, Bao S Y, He Y M, Yang J G 2023 High Power Laser Part. Beams 35 056001

    [38]

    吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜 2023 金属学报 59 504

    Wu X Q, Rong L J, Tan J B, Chen S H, Hu X F, Zhang Y P, Zhang Z Y 2023 Acta Metall. Sin. 59 504

    [39]

    Bischoff J, Motta A T 2012 J. Nucl. Mater. 424 261Google Scholar

    [40]

    Bischoff J, Motta A T, Eichfeld C, Comstock R J, Cao G P, Allen T R 2013 J. Nucl. Mater. 441 604Google Scholar

    [41]

    Tan L, Ren X, Allen T R 2010 Corros. Sci. 52 1520Google Scholar

    [42]

    肖纪美, 曹楚南 2002 材料腐蚀学原理 (北京: 化学工业出版社) 第96—99页

    Xiao J M, Cao C N 2002 Principles of Material Corrosion (Beijing: Chemical Industry Press) pp96–99

    [43]

    Xu S, Long F, Persaud S Y, Guo N, Yao Z W, Daymond M R, Gao W H, Zhang L F, Zhou Z J 2020 Corros. Sci. 165 108380Google Scholar

    [44]

    刘培生 2003 稀有金属材料与工程 32 684

    Liu P S 2023 Rare Metal Mat. Eng. 32 684

    [45]

    Boggs W E 1971 J. Electrochem. Soc. 118 906Google Scholar

    [46]

    李美栓, 周延春 2005 腐蚀科学与防护技术 17 409

    Li M S, Zhou Y C 2005 Corros. Sci. Prot. Technol. 17 409

    [47]

    Stott F H, Wei F I, 1989 Oxid. Met. 31 386

    [48]

    李铁藩 2003 金属高温氧化和热腐蚀 (北京: 化学工业出版社) 第31—35页

    Li T F 2003 High Temperature Oxidation and Hot Corrosion of Metals (Beijing: Chemical Industry Press) pp31–35

    [49]

    Ellingham H J T 1944 J. Soc. Chem. Ind. 63 125Google Scholar

    [50]

    康新婷, 杨坤, 迟煜頔, 王建, 王辉, 李亚宁, 王建永 2012 稀有金属材料与工程 41 822

    Kang X T, Yang K, Chi Y D, Wang J, Wang H, Li Y N, Wang J Y 2012 Rare Metal Mat. Eng. 41 822

  • 图 1  锻造态钢的EBSD图和SEM图 (a) 18-Ni钢EBSD图; (b) 基于图(a)的18-Ni钢相分布图; (c) 18-Ni钢SEM图, 右上角图像放大了α相区域; (d) 25-Ni钢EBSD图; (e) 基于图(d)的25-Ni钢相分布图; (f) 25-Ni钢SEM图

    Fig. 1.  EBSD and SEM images of steels: (a) EBSD images of 18-Ni steel; (b) phase distribution of 18-Ni steel; (c) SEM image of 18-Ni steel, the upper right corner picture magnifies the of α phase area; (d) 25-Ni steel EBSD image; (e) phase distribution of 25-Ni steel; (f) 25-Ni steel SEM image.

    图 2  不同成分钢相体积占比随温度变化相图 (a) 18-Ni钢; (b) 25-Ni钢

    Fig. 2.  Phase volume-temperature phase diagrams of different steels: (a) 18-Ni steel; (b) 25-Ni steel.

    图 3  锻造态样品在550 ℃ LBE腐蚀600 h后宏观形貌图 (a) 18-Ni钢; (b) 25-Ni钢

    Fig. 3.  Macro morphology of the forged steels after 600 h LBE corrosion at 550 ℃: (a) 18 Ni steel; (b) 25-Ni steel.

    图 4  锻造态18-Ni钢和25-Ni钢在550 ℃ LBE中腐蚀600 h后表面XRD图

    Fig. 4.  XRD patterns of forged 18-Ni steel and 25-Ni steel after 600 h LBE corrosion at 550 ℃.

    图 5  样品在550 ℃ LBE腐蚀600 h后表面SEM图 (a), (b) 18-Ni钢; (c), (d) 25-Ni钢

    Fig. 5.  The surface SEM image of the sample after LBE corrosion at 550 °C for 600 h: (a), (b) 18-Ni steel; (c), (d) 25-Ni steel.

    图 6  锻造态样品在550 ℃ LBE中腐蚀600 h的截面SEM图 (a) 18-Ni钢; (b) 25-Ni钢

    Fig. 6.  SEM images show the cross-sectional oxide layer morphology of the forged steels after LBE corrosion at 550 °C: (a) 18-Ni steel; (b) 25-Ni steel.

    图 7  锻造态样品在550 ℃ LBE中腐蚀600 h的截面EDS图  (a) 18-Ni钢; (b) 25-Ni钢

    Fig. 7.  Cross-section EDS diagram of forged steels after LBE corrosion at 550 °C: (a) 18-Ni steel; (b) 25-Ni steel.

    图 8  锻造态钢和850 ℃高温预氧化后钢的XRD图

    Fig. 8.  XRD patterns of the forged steels and pre-oxidized steels at 850 ℃.

    图 9  850 ℃预氧化20 h后18-Ni钢和25-Ni钢的拉曼光谱图

    Fig. 9.  Raman spectra of different samples obtained with 532 nm excitation wavelength: (a) 18-Ni steel; (b) 25-Ni steel.

    图 10  850 ℃预氧化20 h后18-Ni钢的表面SEM图

    Fig. 10.  SEM images of the surface of 18-Ni steel after pr-oxidation at 850 ℃ for 20 h.

    图 11  850 ℃预氧化20 h后25-Ni钢的表面SEM图

    Fig. 11.  SEM image of the surface of 25-Ni steel after pre-oxidation at 850 ℃ for 20 h.

    图 12  850 ℃预氧化20 h后18-Ni钢和25-Ni钢的截面EDS图 (a) 18-Ni钢; (b) 25-Ni钢

    Fig. 12.  Cross-section EDS diagrams of 18-Ni steel and 25-Ni steel after pre-oxidation at 850 ℃ for 20 h: (a) 18-Ni steel; (b) 25-Ni steel.

    图 13  预氧化后的18-Ni钢和25-Ni钢在550 ℃ LBE腐蚀600 h后的XRD图

    Fig. 13.  The XRD diagram of pre-oxidized 18-Ni steel and 25-Ni steel after LBE corrosion at 550 ℃.

    图 14  预氧化样品在550 ℃ LBE腐蚀600 h后的表面SEM图 (a), (b) 18-Ni钢; (c), (d) 25-Ni钢

    Fig. 14.  Surface SEM images of pre oxidized samples after LBE corrosion at 550 ℃ for 600 h: (a) (b) 18-Ni steel; (c), (d) 25-Ni steel.

    图 15  预氧化样品在550 ℃ LBE腐蚀600 h后的截面EDS图 (a) 18-Ni钢; (b) 25-Ni钢

    Fig. 15.  Cross section EDS diagram of pre-oxidized sample after 600 h of LBE corrosion at 550 ℃: (a) 18-Ni steel; (b) 25-Ni steel.

    图 16  锻造态样品钢腐蚀过程示意图 (a) 18-Ni钢; (b) 25-Ni钢

    Fig. 16.  Schematic diagram shows the corrosion process of the forged steels: (a) 18-Ni steel; (b) 25-Ni steel.

    图 17  预氧化后样品钢腐蚀过程示意图 (a) 18-Ni钢; (b) 25-Ni钢

    Fig. 17.  Schematic diagram shows the corrosion process of the pre-oxidized steels: (a) 18-Ni steel; (b) 25-Ni steel.

    表 1  18-Ni钢和25-Ni钢的实际化学成分(质量分数, %)

    Table 1.  The actual chemical composition of 18-Ni steel and 25-Ni steel (mass percentage, %).

    Ni Cr Al Mo Nb Fe
    18-Ni 19.25 14.21 2.66 3.62 1.8 Bal.
    25-Ni 26.67 14.11 2.76 3.55 1.81 Bal.
    下载: 导出CSV

    表 2  图7中氧化物点扫描成分组成(%)

    Table 2.  Composition of oxides after point scanning analysis in Fig.7(%).

    区域CrAlFeNbO
    点10.3043.32.753.6
    点22.213.610.612.447.0
    点31.916.67.32.048.2
    点41.30.558.90.735.5
    点518.81.936.42.237.0
    点68.68.634.017.57.9
    下载: 导出CSV

    表 3  图10图11中氧化物点扫描成分组成(%)

    Table 3.  Composition of oxides after point scanning analysis in Fig.10 and Fig.11(%).

    区域CrAlFeO
    点73.281.5150.1238.59
    点89.9414.2444.269.46
    点97.562.1851.1136.15
    点1025.005.8838.6222.34
    点1115.420.6975.675.20
    下载: 导出CSV

    表 4  图15中氧化物点扫描成分组成(%)

    Table 4.  Composition of oxides after point scanning analysis in Fig.15 (%).

    区域CrAlFeNiO
    点129.24.449.54.230.9
    点131.539.72.62.153.5
    点141.11.185.70.010.9
    点152.117.87.420.95.20
    下载: 导出CSV
  • [1]

    Lu Y H, Song Y Y, Chen S H, Rong L J 2016 Acta Met. Sin. 52 298

    [2]

    Schroer C, Wedemeyer O, Novotny J, Skrypnik A, Konys J 2014 Corros. Sci. 84 113Google Scholar

    [3]

    Yamaki E, Ginestar K , Martinelli L 2011 Corros. Sci. 53 3075

    [4]

    Sapundjiev D, Dyck V S, Bogaerts W 2006 Corros. Sci. 48 577Google Scholar

    [5]

    Kurata Y, Futakawa M, Saito S 2005 J. Nucl. Mater. 343 333Google Scholar

    [6]

    Anderoglu O, Byun T S, Toloczko M, Maloy S A 2012 Metall. Mater. Trans. A 44 70

    [7]

    陈灵芝, 周张健, Schroer C 2020 材料导报 34 05098Google Scholar

    Chen L Z, Zhou Z J, Schroer C 2020 Mater. Rep. 34 05098Google Scholar

    [8]

    Gong X, Marmy P, Qin L, Verlinden B, Wevers M, Seefeldt M 2014 Mater. Sci. Eng. A 618 406Google Scholar

    [9]

    Vogt J , Proriol-Serre I 2013 Procedia Eng. 55 814

    [10]

    Gong X, Li R, Sun M Z, Ren Q S, Liu T, Short M P 2016 J. Nucl. Mater. 482 225

    [11]

    梁娜, 姚存峰, 龙斌, 付晓钢 2022 材料导报 36 21090168Google Scholar

    Liang N, Yao C F, Long B, Fu X G 2022 Mater. Rep. 36 21090168Google Scholar

    [12]

    Kurata Y, Futakawa M, Saito S 2008 J. Nucl. Mater. 373 167

    [13]

    鞠娜, 雷玉成, 陈钢, 朱强, 李天庆, 王丹 2019 原子能科学技术 53 432Google Scholar

    Ju N, Lei Y C, Chen G, Zhu Q, Li T Q 2019 Atomic Energy Sci. Techno. 53 432Google Scholar

    [14]

    Brady M P, Yamamoto Y, Santella M L, Pint B A 2007 Scripta Mater. 57 1119

    [15]

    Yamamoto Y, Takeyama M, Lu Z P, Liu C T, Evans N D, Maziasz P J, Brady M P 2008 Nature 30 191

    [16]

    Lutz B S, Yanar N M, Holcomb G R, Meier G H 2017 Oxid. Met. 87 587

    [17]

    Gao Q Z, Liu Z Y, Li H J, Zhang H L, Jiang C C, Hao A M, Qu F, Lin X P 2021 J. Mater. Sci. Technol. 68 99

    [18]

    Meng H J, Wang J, Wang L, Fang X D, Dong N, Zhang C L, Han P D 2020 Mater. Charact. 163 110233Google Scholar

    [19]

    Shi H, Tang C C, Jianu A, Fetzer R, Weisenburger A, Steinbrueck M, Grosse M, Stieglitz R, Müller G 2020 Corros. Sci. 170 108654Google Scholar

    [20]

    Shen L, Wu B J, Zhao K, Peng H B Wen Y H 2021 Corros. Sci. 191 109754Google Scholar

    [21]

    Yamamoto Y, Brady M P, Ren Q Q, Poplawsky J D, Hoelzer D T, Lance M J 2022 JOM 74 1462

    [22]

    Yamamoto Y, Ren Q Q, Brady M P 2022 Metals 12 717-7Google Scholar

    [23]

    Zhao W X, Jiang S H, Liu W H, Peng X Y, Wang H, Wu Y, Liu X J, Lu Z P 2022 Mater. Sci. Eng. A 857 143995Google Scholar

    [24]

    经济合作与发展组织/核能署 著 (戎利建, 张玉妥, 陆善平, 陈星秋, 王培, 熊超, 叶中飞, 李依依 译) 2007 铅与铅铋共晶合金手册 (北京: 科学出版社)第72—73页

    OECD/NEA (translated by Rong L J, Zhang Y T, Lu S P, Chen X Q, Wang P, Xiong C, Ye Z F, Li Y Y) 2007 Handbook on Lead–Bismuth Eutectic Alloy and Lead (Beijing: Science Press) pp72–73

    [25]

    Brady M P, Yamamoto Y, Santella M L, Maziasz P J, Pint B A, Liu C T, Lu Z P, Bei H 2008 JOM 60 12

    [26]

    Yamamoto Y, Takeyama M, Lu Z P, Liu C T, Evans N D, Maziasz P J, Brady M P 2008 Intermetallics 16 458

    [27]

    程晓农, 姚永泉, 李冬升, 罗锐, 郑琦, 唐桢丁 2017 金属热处理 42 75

    Chen X N, Yao Y Q, Li D S, Luo R, Zheng Q, Tang Z D 2017 Heat Treat. Met. 42 75

    [28]

    Hosemann P, Bai S, Bickel J, Qiu J 2021 JOM 73 4014

    [29]

    Liu Y C, Chen S M, Ouyang F Y, Kai J J 2018 J. Nucl. Mater. 505 13

    [30]

    Chen L Z, Tsisar V, Wang M, Schroer C, Zhou Z J 2021 Corros. Sci. 189 109591Google Scholar

    [31]

    陈灵芝 2021 博士学位论文 (北京: 北京科技大学)

    Chen L Z 2021 Ph. D. Dissertation (Beijing: University of Science and Technology

    [32]

    Wang M, Sun Y D, Feng J K , Zhang R Q, Tang R, Zhou Z J 2016 Int. J. Min. Met. Mater. 23 316

    [33]

    周德强 2014 博士学位论文 (北京: 北京科技大学)

    Zhou D Q 2014 Ph. D. Dissertation (Beijing: University of Science and Technology

    [34]

    Ejenstam J, Szakálos P 2015 J. Nucl. Mater. 461 164Google Scholar

    [35]

    Muller G, Heinzel A, Konys J, Schumacher G, Weisenburger A, Zimmermann F, Engelko V, Rusanov A, Markov V 2002 J. Nucl. Mater. 301 42

    [36]

    熊静, 邓平, 高军, 赵永福 2022 科学技术创新 10 55

    Xiong J, Deng P, Gao J, Zhao Y F 2022 Sci. Technol. Inno. 10 55

    [37]

    王军健, 李华鑫, 李红菊, 郑文健, 闾川阳, 马英鹤, 任森栋, 包士毅, 贺艳明, 杨建国 2023 强激光与粒子束 35 056001

    Wang J J, Li H X, Li H J, Zheng W J, Lv C Y, Ma Y H, Ren S D, Bao S Y, He Y M, Yang J G 2023 High Power Laser Part. Beams 35 056001

    [38]

    吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜 2023 金属学报 59 504

    Wu X Q, Rong L J, Tan J B, Chen S H, Hu X F, Zhang Y P, Zhang Z Y 2023 Acta Metall. Sin. 59 504

    [39]

    Bischoff J, Motta A T 2012 J. Nucl. Mater. 424 261Google Scholar

    [40]

    Bischoff J, Motta A T, Eichfeld C, Comstock R J, Cao G P, Allen T R 2013 J. Nucl. Mater. 441 604Google Scholar

    [41]

    Tan L, Ren X, Allen T R 2010 Corros. Sci. 52 1520Google Scholar

    [42]

    肖纪美, 曹楚南 2002 材料腐蚀学原理 (北京: 化学工业出版社) 第96—99页

    Xiao J M, Cao C N 2002 Principles of Material Corrosion (Beijing: Chemical Industry Press) pp96–99

    [43]

    Xu S, Long F, Persaud S Y, Guo N, Yao Z W, Daymond M R, Gao W H, Zhang L F, Zhou Z J 2020 Corros. Sci. 165 108380Google Scholar

    [44]

    刘培生 2003 稀有金属材料与工程 32 684

    Liu P S 2023 Rare Metal Mat. Eng. 32 684

    [45]

    Boggs W E 1971 J. Electrochem. Soc. 118 906Google Scholar

    [46]

    李美栓, 周延春 2005 腐蚀科学与防护技术 17 409

    Li M S, Zhou Y C 2005 Corros. Sci. Prot. Technol. 17 409

    [47]

    Stott F H, Wei F I, 1989 Oxid. Met. 31 386

    [48]

    李铁藩 2003 金属高温氧化和热腐蚀 (北京: 化学工业出版社) 第31—35页

    Li T F 2003 High Temperature Oxidation and Hot Corrosion of Metals (Beijing: Chemical Industry Press) pp31–35

    [49]

    Ellingham H J T 1944 J. Soc. Chem. Ind. 63 125Google Scholar

    [50]

    康新婷, 杨坤, 迟煜頔, 王建, 王辉, 李亚宁, 王建永 2012 稀有金属材料与工程 41 822

    Kang X T, Yang K, Chi Y D, Wang J, Wang H, Li Y N, Wang J Y 2012 Rare Metal Mat. Eng. 41 822

  • [1] 谢佳苗, 李京阳, 周佳逸, 郝文乾. 含有预裂纹的固体氧化物燃料电池的电极裂纹扩展分析. 物理学报, 2024, 73(23): 238201. doi: 10.7498/aps.73.20241176
    [2] 程大钊, 刘彩艳, 张超然, 屈佳辉, 张静. 中子辐照奥氏体不锈钢晶内/晶间孔隙形貌演化的相场模拟. 物理学报, 2024, 73(22): 224601. doi: 10.7498/aps.73.20241353
    [3] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [4] 廖庆, 李炳生, 葛芳芳, 张宏鹏, 申铁龙, 毛雪丽, 王任大, 盛彦斌, 常海龙, 王志光, 徐帅, 陈黎明, 何晓珣. T91钢和SIMP钢表面AlOx涂层在600 ℃静态液态铅铋共晶中的稳定性和腐蚀行为. 物理学报, 2022, 71(15): 156103. doi: 10.7498/aps.71.20220356
    [5] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究. 物理学报, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [6] 丁翠, 刘充, 张庆华, 龚冠铭, 汪恒, 刘效治, 孟繁琦, 杨好好, 武睿, 宋灿立, 李渭, 何珂, 马旭村, 谷林, 王立莉, 薛其坤. 单层FeSe薄膜/氧化物界面高温超导. 物理学报, 2018, 67(20): 207415. doi: 10.7498/aps.67.20181681
    [7] 高娅娜, 李喜峰, 张建华. 溶胶凝胶法制备高性能锆铝氧化物作为绝缘层的薄膜晶体管. 物理学报, 2014, 63(11): 118502. doi: 10.7498/aps.63.118502
    [8] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [9] 刘贵立, 李勇. 钛铝合金高温氧化机理电子理论研究. 物理学报, 2012, 61(17): 177101. doi: 10.7498/aps.61.177101
    [10] 张国英, 李丹, 梁婷. 铌合金电子结构及其高温氧化行为. 物理学报, 2010, 59(11): 8031-8036. doi: 10.7498/aps.59.8031
    [11] 刘贵立. Nb-Al合金高温氧化机理. 物理学报, 2010, 59(1): 499-503. doi: 10.7498/aps.59.499
    [12] 靳惠明, Felix Adriana, Aroyave Majorri. 离子注钇对镍900℃高温氧化行为及氧化膜性能的影响研究. 物理学报, 2006, 55(11): 6157-6162. doi: 10.7498/aps.55.6157
    [13] 冯玉清, 侯利娜, 朱 涛, 姚淑德, 詹文山. 具有纳米氧化层的磁性隧道结的热稳定性研究. 物理学报, 2005, 54(9): 4340-4344. doi: 10.7498/aps.54.4340
    [14] 马仲发, 庄奕琪, 杜 磊, 包军林, 李伟华. 栅氧化层介质经时击穿的逾渗模型. 物理学报, 2003, 52(8): 2046-2051. doi: 10.7498/aps.52.2046
    [15] 刘红侠, 郑雪峰, 郝跃. 薄栅氧化层中陷阱电荷密度的测量方法. 物理学报, 2002, 51(1): 163-166. doi: 10.7498/aps.51.163
    [16] 刘红侠, 郝跃. 应力导致的薄栅氧化层漏电流瞬态特性研究. 物理学报, 2001, 50(9): 1769-1773. doi: 10.7498/aps.50.1769
    [17] 严辉, 马黎君, 陈光华, 黄世平, 文华杰, 郭伟明. 金属Sn薄膜的高温氧化与表面特征. 物理学报, 1997, 46(8): 1658-1664. doi: 10.7498/aps.46.1658
    [18] 吴坚, 陆怀先, 都有为, 高学奎, 王挺祥. 超细Fe微粒表面氧化层的磁性研究. 物理学报, 1988, 37(12): 2044-2047. doi: 10.7498/aps.37.2044
    [19] 李克诚, 薛士蓥, 祝忠德, 黄詠. 磷在硅表面氧化层中的扩散. 物理学报, 1965, 21(3): 496-502. doi: 10.7498/aps.21.496
    [20] 利用谱线宽度法作钢中渗铝层逐层分析试验报告. 物理学报, 1959, 15(6): 305-310. doi: 10.7498/aps.15.305
计量
  • 文章访问数:  2469
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-07
  • 修回日期:  2023-11-27
  • 上网日期:  2023-11-30
  • 刊出日期:  2024-01-20

/

返回文章
返回