-
以[001]c和[011]c极化的铌锌酸铅-钛酸铅晶体为研究对象, 利用子波理论对其无限大自由薄层中传播的Lamb波的色散及模式交叉特性进行了研究. 发现只有[001]c极化的晶体中的对称与反对称模式Lamb波之间出现了多次交叉, 并且变化规律与铌镁酸铅-钛酸铅的情形相同. Lamb波的A0和S0模式的交叉是由准纵向剪切波慢度曲线的多值关系引起的, 此时其x3方向的波数在一定范围内存在一对非纯虚数的复共轭根. 利用此结论推导出A0和S0模式交叉时弹性常数需要满足的条件, 为判断正交、四方对称性晶体中Lamb波的A0和S0模式是否交叉提供了一种直观、简便的方法.Frequency dispersions of Lamb waves in [001]c and [011]c polarized lead zinc niobate-lead titanate crystal free infinite plates are studied based on the partial wave theory. Multiple crossings between symmetric and antisymmetric Lamb modes are found only in [001]c polarized crystals, and most of the dispersion relations would exhibit the same rule as that in lead magnesium niobate-lead titanate crystals. It is found that multiple crossings between A0 and S0 modes are directly related to the multivalued quasishear vertical slowness curves. A pair of complex conjugate roots of the wave number in the x3 direction is found in a certain area. Equation of elastic constants is obtained when A0 and S0 modes cross under this condition, which can be conveniently used to judge whether A0 and S0 modes cross for crystals with orthogonal and tetragonal symmetries.
-
Keywords:
- dispersion /
- PZN-PT /
- slowness curve /
- mode crossing
[1] Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804
[2] Wang F, Luo L, Zhou D, Zhao X Y, Luo H S 2007 Appl. Phys. Lett. 90 212903
[3] He C J, Jing W P, Wang F F, Zhu K J, Qiu J H 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 1127
[4] He C J, Xu F, Wang J M, Liu Y W 2009 Cryst. Res. Technol. 44 211
[5] Wu T T, Chen Y T, Sun J H, Lin S S, Huang T J 2011 Appl. Phys. Lett. 98 171911
[6] Zhang H Y, Sun X L, Cao Y P, Chen X H, Yu J B 2010 Acta Phys. Sin. 59 7111 (in Chinese) [张海燕, 孙修立, 曹亚萍, 陈先华, 于建波 2010 物理学报 59 7111]
[7] Xiang Y X, Deng M X, Xuan F Z, Liu C J 2011 Ultrasonics 51 974
[8] Li Y, Thompson R B 1990 J. Acoust. Soc. Am. 87 1911
[9] Toda K, Motegi K 2000 J. Acoust. Soc. Am. 107 1045
[10] Valier-Brasier T, Potel C, Bruneau M, Gatignol P 2011 J. Appl. Phys. 109 064902
[11] Chen C W, Zhang R, Chen H, Cao W W 2007 Appl. Phys. Lett. 91 102907
[12] Chen C W, Zhang R, Cao W W 2009 J. Phys. D 42 095411
[13] Farnell G W, Adler E L 1972 Phys. Acoust. 9 35
[14] Zhang R, Jiang B, Cao W W 2002 J. Mater. Sci. Lett. 21 1877
[15] Zhang R, Jiang B, Jiang W H, Cao W W 2006 Appl. Phys. Lett. 89 242908
-
[1] Park S E, Shrout T R 1997 J. Appl. Phys. 82 1804
[2] Wang F, Luo L, Zhou D, Zhao X Y, Luo H S 2007 Appl. Phys. Lett. 90 212903
[3] He C J, Jing W P, Wang F F, Zhu K J, Qiu J H 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58 1127
[4] He C J, Xu F, Wang J M, Liu Y W 2009 Cryst. Res. Technol. 44 211
[5] Wu T T, Chen Y T, Sun J H, Lin S S, Huang T J 2011 Appl. Phys. Lett. 98 171911
[6] Zhang H Y, Sun X L, Cao Y P, Chen X H, Yu J B 2010 Acta Phys. Sin. 59 7111 (in Chinese) [张海燕, 孙修立, 曹亚萍, 陈先华, 于建波 2010 物理学报 59 7111]
[7] Xiang Y X, Deng M X, Xuan F Z, Liu C J 2011 Ultrasonics 51 974
[8] Li Y, Thompson R B 1990 J. Acoust. Soc. Am. 87 1911
[9] Toda K, Motegi K 2000 J. Acoust. Soc. Am. 107 1045
[10] Valier-Brasier T, Potel C, Bruneau M, Gatignol P 2011 J. Appl. Phys. 109 064902
[11] Chen C W, Zhang R, Chen H, Cao W W 2007 Appl. Phys. Lett. 91 102907
[12] Chen C W, Zhang R, Cao W W 2009 J. Phys. D 42 095411
[13] Farnell G W, Adler E L 1972 Phys. Acoust. 9 35
[14] Zhang R, Jiang B, Cao W W 2002 J. Mater. Sci. Lett. 21 1877
[15] Zhang R, Jiang B, Jiang W H, Cao W W 2006 Appl. Phys. Lett. 89 242908
计量
- 文章访问数: 6574
- PDF下载量: 445
- 被引次数: 0