搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lu3+掺杂对CdO陶瓷电、热输运性能的影响

董国义 李龙江 吕青 王淑芳 戴守愚 王江龙 傅光生

引用本文:
Citation:

Lu3+掺杂对CdO陶瓷电、热输运性能的影响

董国义, 李龙江, 吕青, 王淑芳, 戴守愚, 王江龙, 傅光生

Effeet of Lu3+-doping on high-temperature electric and thermal transport properties of CdO

Dong Guo-Yi, Li Long-Jiang, Lü Qing, Wang Shu-Fang, Dai Shou-Yu, Wang Jiang-Long, Fu Guang-Sheng
PDF
导出引用
  • 利用传统固相烧结法制备了Cd1-xLux O (x=0%,0.1%,0.5%,0.75%,1.0%,1.25%,1.5%,2%)陶瓷样品并研究了Lu3+掺杂对其电、热输运性能的影响. 随着Lu3 +掺杂浓度的增大,Cd1-xLux O样品的室温载流子浓度持续增大而其迁移率表现出先增大后减小的趋势. 在3001000 K测试温度区间内,Cd1-xLux O的电导率表现出金属电导行为且其电导率和热导率均随着Lu3+掺杂浓度的增大而升高;塞贝克系数在整个测试区间内均为负值,其随温度和载流子浓度的变化关系可用自由电子模型描述.
    Cd1-xLuxO(x=0%, 0.1%, 0.5%, 0.75%, 1.0%, 1.25%, 1.5%, 2%) ceramics have been synthesized by the traditional solid phase sintering method; and the effects of Lu3+-doping on the electric and thermal transport properties of these samples are investigated. With the increase of Lu3+-doping concentration, the room temperature carrier concentration in Cd1-xLuxO increases while the mobility first increases and then decreases. In the measuring temperature range of 300 to 1000 K, the electric conductivity of Cd1-xLuxO exhibites a metallic conducting behavior, and both their electric conductivity and thermal conductivity increase with the Lu3+-doping concentration. The Seebeck coefficient S of Cd1-xLuxO is negative in the whole measuring temperature range, and the dependence of S on the carrier concentration can be describedby a free electron model.
    • 基金项目: 国家自然科学基金(批准号:51372064)﹑河北省杰出青年科学基金(批准号:2013201249)和河北自然科学基金(批准号:A2014201176)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China(Grant No. 51372064), the National Science Fund for Distinguished Young Scholars of Hebei Province (Grant No. 2013201249), and the Natural Science Foundation of Hebei Province (Grant No. A2014201176).
    [1]

    Ambrosini A, Palmer G B, Maignan A, Poeppelmeier K R 2002 Chem. Mater. 14 52

    [2]
    [3]

    Badeker K 1907 Ann. Phys. 22 749

    [4]

    Bel Hadj Tahar R, Ban T, Ohya Y, Takahashi Y 1998 J. Appl. Phys. 83 2631

    [5]
    [6]
    [7]

    Yan M, Lane M, Kannewurf C R, Changa R P H 2001 Appl. Phys. Lett. 78 2342

    [8]

    Muhammad R, Fayyaz H, Muhammad I, Ahmad S A, Noor N A 2014 Chin. Phys. B 23 017304

    [9]
    [10]

    Wang S F, L Q, Li L J, Fu G S, Liu F Q, Dai S Y, Yu W, Wang J L 2013 Scripta Mater. 69 533

    [11]
    [12]

    Wang S F, Liu F Q, L Q, Dai S Y, Wang J L, Yu W, Fu G S 2013 J. Eur. Ceram. Soc. 33 1763

    [13]
    [14]
    [15]

    Ohta H 2007 Mater. Today 10 15

    [16]

    Zhang L H, Tosho T, Okinaka N, Akiyama T 2007 Mater. Trans. JIM 5 1079

    [17]
    [18]
    [19]

    Wang N, Li H W, Ba Y S, Wang Y F, Wan C L, Fujinami K, Koumoto K 2010 J. Electron. Mater. 39 1777

    [20]
    [21]

    Zheng G H, Yuan Z H, Dai Z X, Wang H Q, Li H B, Ma Y Q, Li G 2013 J. Low Temp. Phys. 173 80

    [22]

    Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 5 (in Chinese)[孙政, 陈少平, 杨江锋, 孟庆森, 崔教林2014物理学报63 5]

    [23]
    [24]

    Yan M, Lane M, Kannewurf C R, Chang R P H 2001 Appl. Phys. Lett. 78 2342

    [25]
    [26]
    [27]

    Look D C, Leedy K D, Vines L, Svensson B G, Zubiaga A, Tuomisto F T, Dout D R, Brillson L J 2011 Phys. Rev. B 84 115202

    [28]
    [29]

    Liu Y, Lin Y H, Xu W, Cheng B, Lan J L, Chen D L 2012 J. Am. Ceram. 95 2568

    [30]
    [31]

    Jung K H, Lee K H, Seo W S, Choi S M 2012 Appl. Phys. Lett. 100 253902

    [32]
    [33]

    Tsujii N, Mori T 2013 Appl. Phys. Exp. 6 043001

    [34]

    B'erardan D, Guilmeau E, Maignan A, Raveau B 2008 Solid. State. Commun. 146 97

    [35]
    [36]
    [37]

    Tsubota T, Ohtaki M, Eguchi K, Arai H 1997 J. Mater. Chem. 7 85

    [38]

    Jood P, Mehta R J, Zhang Y L, Peleckis G, Wang X L, Siegel R W 2011 Nano. Lett. 11 4337

    [39]
  • [1]

    Ambrosini A, Palmer G B, Maignan A, Poeppelmeier K R 2002 Chem. Mater. 14 52

    [2]
    [3]

    Badeker K 1907 Ann. Phys. 22 749

    [4]

    Bel Hadj Tahar R, Ban T, Ohya Y, Takahashi Y 1998 J. Appl. Phys. 83 2631

    [5]
    [6]
    [7]

    Yan M, Lane M, Kannewurf C R, Changa R P H 2001 Appl. Phys. Lett. 78 2342

    [8]

    Muhammad R, Fayyaz H, Muhammad I, Ahmad S A, Noor N A 2014 Chin. Phys. B 23 017304

    [9]
    [10]

    Wang S F, L Q, Li L J, Fu G S, Liu F Q, Dai S Y, Yu W, Wang J L 2013 Scripta Mater. 69 533

    [11]
    [12]

    Wang S F, Liu F Q, L Q, Dai S Y, Wang J L, Yu W, Fu G S 2013 J. Eur. Ceram. Soc. 33 1763

    [13]
    [14]
    [15]

    Ohta H 2007 Mater. Today 10 15

    [16]

    Zhang L H, Tosho T, Okinaka N, Akiyama T 2007 Mater. Trans. JIM 5 1079

    [17]
    [18]
    [19]

    Wang N, Li H W, Ba Y S, Wang Y F, Wan C L, Fujinami K, Koumoto K 2010 J. Electron. Mater. 39 1777

    [20]
    [21]

    Zheng G H, Yuan Z H, Dai Z X, Wang H Q, Li H B, Ma Y Q, Li G 2013 J. Low Temp. Phys. 173 80

    [22]

    Sun Z, Chen S P, Yang J F, Meng Q S, Cui J L 2014 Acta Phys. Sin. 63 5 (in Chinese)[孙政, 陈少平, 杨江锋, 孟庆森, 崔教林2014物理学报63 5]

    [23]
    [24]

    Yan M, Lane M, Kannewurf C R, Chang R P H 2001 Appl. Phys. Lett. 78 2342

    [25]
    [26]
    [27]

    Look D C, Leedy K D, Vines L, Svensson B G, Zubiaga A, Tuomisto F T, Dout D R, Brillson L J 2011 Phys. Rev. B 84 115202

    [28]
    [29]

    Liu Y, Lin Y H, Xu W, Cheng B, Lan J L, Chen D L 2012 J. Am. Ceram. 95 2568

    [30]
    [31]

    Jung K H, Lee K H, Seo W S, Choi S M 2012 Appl. Phys. Lett. 100 253902

    [32]
    [33]

    Tsujii N, Mori T 2013 Appl. Phys. Exp. 6 043001

    [34]

    B'erardan D, Guilmeau E, Maignan A, Raveau B 2008 Solid. State. Commun. 146 97

    [35]
    [36]
    [37]

    Tsubota T, Ohtaki M, Eguchi K, Arai H 1997 J. Mater. Chem. 7 85

    [38]

    Jood P, Mehta R J, Zhang Y L, Peleckis G, Wang X L, Siegel R W 2011 Nano. Lett. 11 4337

    [39]
  • [1] 宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺. 混合失配模型预测金属/半导体界面热导. 物理学报, 2023, 72(3): 034401. doi: 10.7498/aps.72.20221981
    [2] 杨健, 高矿红, 李志青. La掺杂BaSnO3薄膜的低温电输运性质. 物理学报, 2023, 72(22): 227301. doi: 10.7498/aps.72.20231082
    [3] 李玲, 潘天择, 马家骏, 张善涛, 汪尧进. PNZST:AlN复合陶瓷局域应力场增强热释电性能机理. 物理学报, 2022, 71(21): 217701. doi: 10.7498/aps.71.20221250
    [4] 郭少波, 闫世光, 曹菲, 姚春华, 王根水, 董显林. 红外探测用无铅铁电陶瓷的热释电特性研究进展. 物理学报, 2020, 69(12): 127708. doi: 10.7498/aps.69.20200303
    [5] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性. 物理学报, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [6] 刘冉, 高琳洁, 李龙江, 翟胜军, 王江龙, 傅广生, 王淑芳. Ca2+掺杂对CdO多晶热电性能的影响. 物理学报, 2015, 64(21): 218101. doi: 10.7498/aps.64.218101
    [7] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [8] 向军, 郭银涛, 周广振, 褚艳秋. 碱土和过渡金属掺杂NdAlO3导电陶瓷的制备、结构与电性能研究. 物理学报, 2012, 61(22): 227201. doi: 10.7498/aps.61.227201
    [9] 王世伟, 朱明原, 钟民, 刘聪, 李瑛, 胡业旻, 金红明. 脉冲磁场对水热法制备Mn掺杂ZnO稀磁半导体的影响. 物理学报, 2012, 61(19): 198103. doi: 10.7498/aps.61.198103
    [10] 朱明原, 刘聪, 薄伟强, 舒佳武, 胡业旻, 金红明, 王世伟, 李瑛. 脉冲磁场下水热法制备Cr掺杂ZnO稀磁半导体晶体. 物理学报, 2012, 61(7): 078106. doi: 10.7498/aps.61.078106
    [11] 伍君博, 唐新桂, 贾振华, 陈东阁, 蒋艳平, 刘秋香. 钇和镧掺杂氧化铝陶瓷的热导及其介电弛豫特性研究. 物理学报, 2012, 61(20): 207702. doi: 10.7498/aps.61.207702
    [12] 宋桂林, 周晓辉, 苏健, 杨海刚, 王天兴, 常方高. Gd,Co共掺杂对BiFeO3陶瓷电输运和铁磁特性的影响. 物理学报, 2012, 61(17): 177501. doi: 10.7498/aps.61.177501
    [13] 陈顺生, 黄昌, 王瑞龙, 杨昌平, 孙志刚. Ag/Nd0.7Sr0.3MnO3陶瓷界面电输运性质研究. 物理学报, 2011, 60(3): 037304. doi: 10.7498/aps.60.037304
    [14] 赵华波, 王亮, 张朝晖. 钯金属吸附对半导体性碳纳米管电输运的影响. 物理学报, 2011, 60(8): 087302. doi: 10.7498/aps.60.087302
    [15] 丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉. 锰掺杂对Ba(Zr, Ti)O3陶瓷压电与介电性能的影响. 物理学报, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [16] 金 灿, 朱 骏, 毛翔宇, 何军辉, 陈小兵. Mo掺杂SrBi4Ti4O15陶瓷的铁电介电性能. 物理学报, 2006, 55(7): 3716-3720. doi: 10.7498/aps.55.3716
    [17] 吴柏枚, 李 波, 杨东升, 郑卫华, 李世燕, 曹烈兆, 陈仙辉. 新型超导体MgB2和MgCNi3热、电输运性质研究. 物理学报, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
    [18] 刘鹏, 边小兵, 张良莹, 姚熹. (PbBa)(Zr,Sn,Ti)O_3反铁电/弛豫型铁电相界陶瓷的相变与介电、热释电性质. 物理学报, 2002, 51(7): 1628-1633. doi: 10.7498/aps.51.1628
    [19] 南策文. 敏感半导体陶瓷的显微物理模型(Ⅱ). 物理学报, 1987, 36(10): 1313-1320. doi: 10.7498/aps.36.1313
    [20] 南策文. 敏感半导体陶瓷的显微物理模型(Ⅰ). 物理学报, 1987, 36(10): 1305-1312. doi: 10.7498/aps.36.1305
计量
  • 文章访问数:  7841
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-19
  • 修回日期:  2014-05-13
  • 刊出日期:  2014-09-05

/

返回文章
返回