-
为了优选等离激元太阳能分解水体系中金属和半导体的复合光电极,本文采用非平衡分子动力学方法计算了等离激元金属Cu、Ag和Au与半导体TiO2、ZnO和MoS2的复合电极在不同温度下的界面热导,并通过计算声子态密度和声子参与率研究了不同频率的声子与界面热导的关系。结果表明,随温度的增加,不同复合电极的界面热导增加。在相同的半导体TiO2上,Cu-TiO2和Ag-TiO2界面热导均高于Au-TiO2,Cu-TiO2复合电极的界面热导在800K时可以达到973.56 MW m-2 K-1。对于等离激元金属Au,相对MoS2和TiO2,其与ZnO复合的界面导热更高;而对于等离激元金属Cu,Cu-TiO2的界面热导高于预测的Cu-ZnO,这取决于更多处于核心热输运频段的低频声子参与界面热输运。Plasmonic solar water splitting is based on the composite electrode incorporating plasmonic metal nanoparticles on semiconductor, where the localized heating generated by relaxation of the metal's localized surface plasmon resonance (LSPR) under light excitation enhances hydrogen production efficiency. To optimize composite photoanodes for photoelectrochemical water splitting system, this study employs non-equilibrium molecular dynamics simulations to calculate the interfacial thermal conductivity between plasmonic metals (Cu, Ag, Au) and semiconductors (TiO2, ZnO, MoS2) across varying temperatures. The relationship between interfacial thermal conductivity and phonons of different frequencies was investigated via vibrational density of states which was calculated from the velocity autocorrelation functions and subsequent phonon participation ratio. The results indicate that the interfacial thermal conductivity across all composite electrode configurations enhance with the increase of temperature. When paired with TiO2, the thermal transport performances in Cu-TiO2 and Ag-TiO2 are superior to that of Au-TiO2, and the interfacial thermal conductivity of Cu-TiO2 reaches 973.56 MW m-2·K-1 at 800 K. With Au as the fixed plasmonic component, Au-ZnO demonstrates the higher interfacial thermal conductivity over Au-MoS2 and Au-TiO2, showing 324.44 MW m-2 K-1 at 800 K. Based on the obtained interfacial thermal conductivities of different composite photoanodes, Cu-ZnO is predicted as optimal composite, but its interfacial thermal conductivity of 547.69 MW m-2 K-1 at 800 K ranks second only to Cu-TiO2. The analysis of vibrational density of states and phonon participation ratio reveal the low-frequency region (0-10 THz) as dominant for thermal transport, with both interfaces exhibiting the high phonon participation ratio range of 0.7-0.8. However, Cu-TiO2 possesses significantly higher vibrational density of states than Cu-ZnO within this critical band. Although Cu-ZnO shows higher phonon participation ratio range in the high-frequency range, its lower overall interfacial thermal conductivity is attributed to the minimal contribution of high-frequency phonons to interfacial thermal conductance. The findings provide optimization strategies based on interfacial thermal transport mechanisms for constructing efficient photoanodes for solar water splitting.
-
Keywords:
- phonon thermal transport /
- molecular dynamics /
- plasmonic metals /
- composite photoelectrodes
-
[1] Cavigli L, Milanesi A, Khlebtsov B N, Centi S, Ratto F, Khlebtsov N G, Pini R 2020 J. Colloid Interface Sci. 578 358
[2] Czelej K, Colmenares J C, Jabłczyńska K, Ćwieka K, Werner Ł, Gradoń L 2021 Catal. Today 380 156
[3] Ghosh U, Pal A, Pal T 2022 Adv. Mater. Interfaces 9 2200465
[4] Lou Y B, Zhang Y K, Cheng L, Chen J X, Zhao Y X 2018 ChemSusChem 11 1505
[5] Liu L D, Zhang H F, Xing S, Zhang Y, Li S G, Wei C, Peng F, Liu X Y 2023 Adv. Sci. 10 2207342
[6] Sang L X, Wang C, Zhao Y, Ren Z Y 2023 J. Phys. Chem. C 127 14666
[7] Zhao W R, Ai Z Y, Dai J S, Zhang M 2014 PLoS ONE 9 e103671
[8] Zhai H S, Liu X L, Wang Z Y, Liu Y Y, Zheng Z K, Qin X Y, Zhang X Y, Wang P, Huang B B 2020 Chinese J. Catal. 41 1613
[9] Li Y Y, Wu S, Zheng J W, Peng Y K, Prabhakaran D, Taylor R A, Tsang S C E 2020 Mater. Today 41 34
[10] Sang L X, Ma M N 2023 Chem. J. Chinese U. 44 20220768 (in Chinese) [桑丽霞, 马梦楠. 2023 高等学校化学学报 44 20220768]
[11] Sang L X, Li Z K 2024 Acta Phys. Sin. 73 103 [桑丽霞, 李志康. 2024 物理学报 73 103]
[12] Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605
[13] Kunthakudee N, Puangpetch T, Ramakul P, Serivalsatit K, Hunsom M 2022 Int. J. Hydrogen Energ. 47 23570
[14] Meng H, Maruyama S G, Xiang R, Yang N 2021 Int. J. Heat Mass Tran. 180 121773
[15] Lu Z X, Wang Y, Ruan X L 2016 Phys. Rev. B 93 064302
[16] Majumdar A, Reddy P 2004 Appl. Phys. Lett. 84 4768
[17] Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401 (in Chinese) [宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023物理学报 72 034401]
[18] Giri A, Gaskins J T, Donovan B F, Szwejkowski C, Warzoha R J, Rodriguez M A, Ihlefeld J, Hopkins P E 2015 J. Appl. Phys. 117 105105
[19] Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857
[20] Wu X, Han Q 2021 ACS Appl. Mater. Interfaces 13 32564
[21] Loh G C, Teo E H T, Tay B K 2012 Diam. Relat. Mater. 23 88
[22] Robert S, Leonid Z, Pamela N 2007 Int. J. Heat Mass Tran. 50 3977
[23] Samy M, Konstantinos T 2012 Phys. Rev. B 86 094303
[24] Tang Z Y, Wang X X, He C Y, Li J, Chen M X, Tang C, Ouyang T 2024 Phys. Rev. B 110 134320
[25] Li Z D, Han L W, Ouyang T, Cao J X, Yao Y S, Wei X L 2025 Phys. Rev. Mater. 9 033804
[26] Liu Y, Wu W H, Yang S X, Yang P 2022 Surf. Interfaces 28 101640
[27] Wang W D, Pi Z L, Lei F, Lu Y 2016 AIP Adv. 6 035111
[28] Steve Plimpton 1995 J. Comput. Phys 117 1
[29] Zong Z C, Deng S C, Qin Y J, Wan X, Zhan J H, Ma D K, Yang N 2023 Nanoscale 15 16472
[30] Lin G, Jiang L, Ji P F 2023 Phys. Chem. Chem. Phys. 25 19853
[31] Liu X J, Zhang G, Zhang Y W 2016 Nano Res. 9 2372
[32] Namsani S, Singh J K 2018 J. Phys. Chem. C 122 2113
[33] Pei Q X, Guo J Y, Suwardi A, Zhang G 2023 J. Phys. Chem. C 127 19796
[34] Sheng Y F, Hu Y, Fan Z Y, Bao H 2022 Phys. Rev. B 105 075301
[35] Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302 (in Chinese) [刘东静, 王韶铭, 杨平 2021物理学报 70 187302]
[36] Lu C C, Li Z H, Li S C, Li Z, Zhang Y Y, Zhao J H, Wei N 2023 Carbon 213 118250
[37] Zhou H B, Zhang G 2018 Chin. Phys. B 27 034401
计量
- 文章访问数: 52
- PDF下载量: 0
- 被引次数: 0