搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离激元金属-半导体复合电极的界面声子热输运特性

郑子超 李志康 桑丽霞

引用本文:
Citation:

等离激元金属-半导体复合电极的界面声子热输运特性

郑子超, 李志康, 桑丽霞

Interfacial Phonon Thermal Transport Properties of Semiconductor Composite Electrodes with Plasmonic metal

Zheng Zi-Chao, Li Zhi-Kang, Sang Li-Xia
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 为了优选等离激元太阳能分解水体系中金属和半导体的复合光电极,本文采用非平衡分子动力学方法计算了等离激元金属Cu、Ag和Au与半导体TiO2、ZnO和MoS2的复合电极在不同温度下的界面热导,并通过计算声子态密度和声子参与率研究了不同频率的声子与界面热导的关系。结果表明,随温度的增加,不同复合电极的界面热导增加。在相同的半导体TiO2上,Cu-TiO2和Ag-TiO2界面热导均高于Au-TiO2,Cu-TiO2复合电极的界面热导在800K时可以达到973.56 MW m-2 K-1。对于等离激元金属Au,相对MoS2和TiO2,其与ZnO复合的界面导热更高;而对于等离激元金属Cu,Cu-TiO2的界面热导高于预测的Cu-ZnO,这取决于更多处于核心热输运频段的低频声子参与界面热输运。
    Plasmonic solar water splitting is based on the composite electrode incorporating plasmonic metal nanoparticles on semiconductor, where the localized heating generated by relaxation of the metal's localized surface plasmon resonance (LSPR) under light excitation enhances hydrogen production efficiency. To optimize composite photoanodes for photoelectrochemical water splitting system, this study employs non-equilibrium molecular dynamics simulations to calculate the interfacial thermal conductivity between plasmonic metals (Cu, Ag, Au) and semiconductors (TiO2, ZnO, MoS2) across varying temperatures. The relationship between interfacial thermal conductivity and phonons of different frequencies was investigated via vibrational density of states which was calculated from the velocity autocorrelation functions and subsequent phonon participation ratio. The results indicate that the interfacial thermal conductivity across all composite electrode configurations enhance with the increase of temperature. When paired with TiO2, the thermal transport performances in Cu-TiO2 and Ag-TiO2 are superior to that of Au-TiO2, and the interfacial thermal conductivity of Cu-TiO2 reaches 973.56 MW m-2·K-1 at 800 K. With Au as the fixed plasmonic component, Au-ZnO demonstrates the higher interfacial thermal conductivity over Au-MoS2 and Au-TiO2, showing 324.44 MW m-2 K-1 at 800 K. Based on the obtained interfacial thermal conductivities of different composite photoanodes, Cu-ZnO is predicted as optimal composite, but its interfacial thermal conductivity of 547.69 MW m-2 K-1 at 800 K ranks second only to Cu-TiO2. The analysis of vibrational density of states and phonon participation ratio reveal the low-frequency region (0-10 THz) as dominant for thermal transport, with both interfaces exhibiting the high phonon participation ratio range of 0.7-0.8. However, Cu-TiO2 possesses significantly higher vibrational density of states than Cu-ZnO within this critical band. Although Cu-ZnO shows higher phonon participation ratio range in the high-frequency range, its lower overall interfacial thermal conductivity is attributed to the minimal contribution of high-frequency phonons to interfacial thermal conductance. The findings provide optimization strategies based on interfacial thermal transport mechanisms for constructing efficient photoanodes for solar water splitting.
  • [1]

    Cavigli L, Milanesi A, Khlebtsov B N, Centi S, Ratto F, Khlebtsov N G, Pini R 2020 J. Colloid Interface Sci. 578 358

    [2]

    Czelej K, Colmenares J C, Jabłczyńska K, Ćwieka K, Werner Ł, Gradoń L 2021 Catal. Today 380 156

    [3]

    Ghosh U, Pal A, Pal T 2022 Adv. Mater. Interfaces 9 2200465

    [4]

    Lou Y B, Zhang Y K, Cheng L, Chen J X, Zhao Y X 2018 ChemSusChem 11 1505

    [5]

    Liu L D, Zhang H F, Xing S, Zhang Y, Li S G, Wei C, Peng F, Liu X Y 2023 Adv. Sci. 10 2207342

    [6]

    Sang L X, Wang C, Zhao Y, Ren Z Y 2023 J. Phys. Chem. C 127 14666

    [7]

    Zhao W R, Ai Z Y, Dai J S, Zhang M 2014 PLoS ONE 9 e103671

    [8]

    Zhai H S, Liu X L, Wang Z Y, Liu Y Y, Zheng Z K, Qin X Y, Zhang X Y, Wang P, Huang B B 2020 Chinese J. Catal. 41 1613

    [9]

    Li Y Y, Wu S, Zheng J W, Peng Y K, Prabhakaran D, Taylor R A, Tsang S C E 2020 Mater. Today 41 34

    [10]

    Sang L X, Ma M N 2023 Chem. J. Chinese U. 44 20220768 (in Chinese) [桑丽霞, 马梦楠. 2023 高等学校化学学报 44 20220768]

    [11]

    Sang L X, Li Z K 2024 Acta Phys. Sin. 73 103 [桑丽霞, 李志康. 2024 物理学报 73 103]

    [12]

    Swartz E T, Pohl R O 1989 Rev. Mod. Phys. 61 605

    [13]

    Kunthakudee N, Puangpetch T, Ramakul P, Serivalsatit K, Hunsom M 2022 Int. J. Hydrogen Energ. 47 23570

    [14]

    Meng H, Maruyama S G, Xiang R, Yang N 2021 Int. J. Heat Mass Tran. 180 121773

    [15]

    Lu Z X, Wang Y, Ruan X L 2016 Phys. Rev. B 93 064302

    [16]

    Majumdar A, Reddy P 2004 Appl. Phys. Lett. 84 4768

    [17]

    Zong Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401 (in Chinese) [宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023物理学报 72 034401]

    [18]

    Giri A, Gaskins J T, Donovan B F, Szwejkowski C, Warzoha R J, Rodriguez M A, Ihlefeld J, Hopkins P E 2015 J. Appl. Phys. 117 105105

    [19]

    Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857

    [20]

    Wu X, Han Q 2021 ACS Appl. Mater. Interfaces 13 32564

    [21]

    Loh G C, Teo E H T, Tay B K 2012 Diam. Relat. Mater. 23 88

    [22]

    Robert S, Leonid Z, Pamela N 2007 Int. J. Heat Mass Tran. 50 3977

    [23]

    Samy M, Konstantinos T 2012 Phys. Rev. B 86 094303

    [24]

    Tang Z Y, Wang X X, He C Y, Li J, Chen M X, Tang C, Ouyang T 2024 Phys. Rev. B 110 134320

    [25]

    Li Z D, Han L W, Ouyang T, Cao J X, Yao Y S, Wei X L 2025 Phys. Rev. Mater. 9 033804

    [26]

    Liu Y, Wu W H, Yang S X, Yang P 2022 Surf. Interfaces 28 101640

    [27]

    Wang W D, Pi Z L, Lei F, Lu Y 2016 AIP Adv. 6 035111

    [28]

    Steve Plimpton 1995 J. Comput. Phys 117 1

    [29]

    Zong Z C, Deng S C, Qin Y J, Wan X, Zhan J H, Ma D K, Yang N 2023 Nanoscale 15 16472

    [30]

    Lin G, Jiang L, Ji P F 2023 Phys. Chem. Chem. Phys. 25 19853

    [31]

    Liu X J, Zhang G, Zhang Y W 2016 Nano Res. 9 2372

    [32]

    Namsani S, Singh J K 2018 J. Phys. Chem. C 122 2113

    [33]

    Pei Q X, Guo J Y, Suwardi A, Zhang G 2023 J. Phys. Chem. C 127 19796

    [34]

    Sheng Y F, Hu Y, Fan Z Y, Bao H 2022 Phys. Rev. B 105 075301

    [35]

    Liu D J, Wang S M, Yang P 2021 Acta Phys. Sin. 70 187302 (in Chinese) [刘东静, 王韶铭, 杨平 2021物理学报 70 187302]

    [36]

    Lu C C, Li Z H, Li S C, Li Z, Zhang Y Y, Zhao J H, Wei N 2023 Carbon 213 118250

    [37]

    Zhou H B, Zhang G 2018 Chin. Phys. B 27 034401

  • [1] 李丽丽, 韩爽, 王玉龙, 刘统江, 李育哲, 高俊国. 氢键对聚丙烯复合材料分子结构与电荷输运特性的影响. 物理学报, doi: 10.7498/aps.74.20250277
    [2] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20240026
    [3] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20202194
    [4] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20201861
    [5] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, doi: 10.7498/aps.69.20200491
    [6] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, doi: 10.7498/aps.67.20172424
    [7] 李丽丽, Xia Zhen-Hai, 杨延清, 韩明. SiC纳米纤维/C/SiC复合材料拉伸行为的分子动力学研究. 物理学报, doi: 10.7498/aps.64.117101
    [8] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.086401
    [9] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.63.236601
    [10] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究. 物理学报, doi: 10.7498/aps.62.247101
    [11] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移. 物理学报, doi: 10.7498/aps.60.126602
    [12] 陈俊, 史琳, 王楠, 毕胜山. 基于分子动力学模拟流体输运性质的稳定性分析. 物理学报, doi: 10.7498/aps.60.126601
    [13] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.59.4781
    [14] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.1225
    [15] 何安民, 秦承森, 邵建立, 王裴. 金属Al表面熔化各向异性的分子动力学模拟. 物理学报, doi: 10.7498/aps.58.2667
    [16] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.56.1499
    [17] 周宗荣, 王 宇, 夏源明. γ-TiAl金属间化合物面缺陷能的分子动力学研究. 物理学报, doi: 10.7498/aps.56.1526
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.54.4836
    [19] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.2386
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  52
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-12

/

返回文章
返回