搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究

唐翠明 赵锋 陈晓旭 陈华君 程新路

引用本文:
Citation:

Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究

唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路

Thermite reaction of Al and α-Fe2O3 at the nanometer interface:ab initio molecular dynamics study

Tang Cui-Ming, Zhao Feng, Chen Xiao-Xu, Chen Hua-Jun, Cheng Xin-Lu
PDF
导出引用
  • 在正则系综统下,温度为2000 K时,利用基于密度泛函理论的第一性原理分子动力学计算方法对Al与赤铁矿α-Fe2O3的铝热反应进行了研究. 模拟得出Fe–O键的数量随着时间的增加而减小,Al–O键和Fe–Fe键的数量随时间的增加而增大;同时Fe离子总的电荷量随时间的增加而减小,而Al离子总的电荷量随时间的增加而增大. 模拟结果表明,在Al/Fe2O3铝热反应中发生了氧化还原反应,Al被氧化,Fe离子被还原;在界面处生成Al–O键,Fe–O键发生断裂;氧化还原反应完成需约3 ps.
    Based on the density function theory, thermite reaction between Al and α-Fe2O3 at temperature 2000 K in canonical ensemble is investigated by ab initio molecular dynamics. In the simulation, with the increasing of the time, the number of the Fe–O bond decreases, while the numbers of Al–O bonds and Fe–Fe bonds increase. At the same time, the total charge quantity of Fe ions decreases and the total charge quantity of Al ions increases as time increases. In the Al/Fe2O3 thermite reaction, the redox reaction is observed, Al atoms are oxidized and the Fe ions are reduced. And then the rupture of Fe–O bonds and the formation of Al–O bonds happen at the interface. Whole redox reaction is completed in about 3 ps.
    • 基金项目: 国家自然科学基金(批准号:11176020)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11176020).
    [1]

    Plovnick R H, Richards E A 2001 Mater. Res. Bull. 36 1487

    [2]

    Ciurowa K W, Gamrat K, Sawowicz Z 2005 J. Therm. Anal. Calorim. 80 619

    [3]

    Pan G P 1989 The Basis and Application of Pyrotechnics (Nanjing: Jiangsu Science and Technology Publishing House) pp6–21 (in Chinese) [潘功配 1989 烟火技术基础与应用 (南京: 江苏科学技术出版社)]第6–21页

    [4]

    Tillotson T M, Gash A E, Simpson R L, Hrubesh L W, Satcher Jr J H, Poco J F 2001 J. Non-Cryst. Solids 285 338

    [5]

    Simpson R L, Lee R, Tillotson T M 1999 U. S. Patent 9818262

    [6]

    Manesh N A, Basu S, Kumar R 2010 Combust. Flame 157 476

    [7]

    Menon L, Aurongzeb D, Patibandla S, Ram K B 2006 J. Appl. Phys. 100 034317

    [8]

    Cheng J L, Hng H H, Ng H Y, Soon P C, Lee Y W 2010 J. Phys. Chem. Solids 71 90

    [9]

    Cheng J L, Hng H H, Lee Y W, Du S W, Thadhani N N 2010 Combust. Flame 157 2241

    [10]

    Zhang K, Rossi C, Rodriguez G A A, Tenailleau C, Alphonse P 2007 Appl. Phys. Lett. 91 113117

    [11]

    Williams R A, Patel J V, Ermoline A, Schoenitz M, Dreizin E L 2013 Combust. Flame 160 734

    [12]

    Wang Y, Li F S, Jiang W, Zhang X F, Guo X D 2008 Init. Pyrotechn. 4 11 (in Chinese) [王毅, 李凤生, 姜炜, 张先锋, 郭效德 2008 火工品 4 11]

    [13]

    An T, Zhao F Q, Pei Q, Xiao L B, Xu S Y, Gao H X, Xing X L 2011 Chin. J. Inorg. Chem. 27 231 (in Chinese) [安亭, 赵凤起, 裴庆, 肖立柏, 徐司雨, 高红旭, 邢晓玲 2011 无机化学学报 27 231]

    [14]

    Tomar V, Zhou M 2004 Mater. Sci. Forum. 157 465

    [15]

    Tomar V, Zhou M 2006 Mater. Res. Soc. Symp. Proc. 896 0896-H08-03

    [16]

    Tomar V, Zhou M 2006 Phys. Rev. B 73 174116

    [17]

    Tomar V 2009 Molecular Modeling of Al-Fe2O3 Nanomaterial System: Nanocrystalline Material Deformation and Shock Wave Propagation Analyses (Saarbrcken: VDM)

    [18]

    Xia D, Wang X Q 2012 Acta Phys. Sin. 61 130510 (in Chinese) [夏冬, 王新强 2012 物理学报 61 130510]

    [19]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2008 Phys. Rev. E 77 066103

    [20]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2009 Appl. Phys. Lett. 95 043114

    [21]

    Shimojo F, Ohmura S, Nakano A, Kalia R K, Vashishta P 2011 Eur. Phys. J. Spec. Top. 196 53

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Nosè S 1984 Mol. Phys. 52 255

    [25]

    Hoover W G 1985 Phys. Rev. A 31 1695

  • [1]

    Plovnick R H, Richards E A 2001 Mater. Res. Bull. 36 1487

    [2]

    Ciurowa K W, Gamrat K, Sawowicz Z 2005 J. Therm. Anal. Calorim. 80 619

    [3]

    Pan G P 1989 The Basis and Application of Pyrotechnics (Nanjing: Jiangsu Science and Technology Publishing House) pp6–21 (in Chinese) [潘功配 1989 烟火技术基础与应用 (南京: 江苏科学技术出版社)]第6–21页

    [4]

    Tillotson T M, Gash A E, Simpson R L, Hrubesh L W, Satcher Jr J H, Poco J F 2001 J. Non-Cryst. Solids 285 338

    [5]

    Simpson R L, Lee R, Tillotson T M 1999 U. S. Patent 9818262

    [6]

    Manesh N A, Basu S, Kumar R 2010 Combust. Flame 157 476

    [7]

    Menon L, Aurongzeb D, Patibandla S, Ram K B 2006 J. Appl. Phys. 100 034317

    [8]

    Cheng J L, Hng H H, Ng H Y, Soon P C, Lee Y W 2010 J. Phys. Chem. Solids 71 90

    [9]

    Cheng J L, Hng H H, Lee Y W, Du S W, Thadhani N N 2010 Combust. Flame 157 2241

    [10]

    Zhang K, Rossi C, Rodriguez G A A, Tenailleau C, Alphonse P 2007 Appl. Phys. Lett. 91 113117

    [11]

    Williams R A, Patel J V, Ermoline A, Schoenitz M, Dreizin E L 2013 Combust. Flame 160 734

    [12]

    Wang Y, Li F S, Jiang W, Zhang X F, Guo X D 2008 Init. Pyrotechn. 4 11 (in Chinese) [王毅, 李凤生, 姜炜, 张先锋, 郭效德 2008 火工品 4 11]

    [13]

    An T, Zhao F Q, Pei Q, Xiao L B, Xu S Y, Gao H X, Xing X L 2011 Chin. J. Inorg. Chem. 27 231 (in Chinese) [安亭, 赵凤起, 裴庆, 肖立柏, 徐司雨, 高红旭, 邢晓玲 2011 无机化学学报 27 231]

    [14]

    Tomar V, Zhou M 2004 Mater. Sci. Forum. 157 465

    [15]

    Tomar V, Zhou M 2006 Mater. Res. Soc. Symp. Proc. 896 0896-H08-03

    [16]

    Tomar V, Zhou M 2006 Phys. Rev. B 73 174116

    [17]

    Tomar V 2009 Molecular Modeling of Al-Fe2O3 Nanomaterial System: Nanocrystalline Material Deformation and Shock Wave Propagation Analyses (Saarbrcken: VDM)

    [18]

    Xia D, Wang X Q 2012 Acta Phys. Sin. 61 130510 (in Chinese) [夏冬, 王新强 2012 物理学报 61 130510]

    [19]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2008 Phys. Rev. E 77 066103

    [20]

    Shimojo F, Nakano A, Kalia R K, Vashishta P 2009 Appl. Phys. Lett. 95 043114

    [21]

    Shimojo F, Ohmura S, Nakano A, Kalia R K, Vashishta P 2011 Eur. Phys. J. Spec. Top. 196 53

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [24]

    Nosè S 1984 Mol. Phys. 52 255

    [25]

    Hoover W G 1985 Phys. Rev. A 31 1695

  • [1] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [2] 彭婕, 张嗣杰, 王苛, DoveMartin. 经式8-羟基喹啉铝的光谱与激发性质密度泛函. 物理学报, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [3] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究. 物理学报, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [4] 刘强, 郭巧能, 钱相飞, 王海宁, 郭睿林, 肖志杰, 裴海蛟. 循环载荷下纳米铜/铝薄膜孔洞形核、生长及闭合的分子动力学模拟. 物理学报, 2019, 68(13): 133101. doi: 10.7498/aps.68.20181901
    [5] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [6] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究. 物理学报, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [7] 尹灵康, 徐顺, Seongmin Jeong, Yongseok Jho, 王健君, 周昕. 广义等温等压系综-分子动力学模拟全原子水的气液共存形貌. 物理学报, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [8] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [9] 林长鹏, 刘新健, 饶中浩. 铝纳米颗粒的热物性及相变行为的分子动力学模拟. 物理学报, 2015, 64(8): 083601. doi: 10.7498/aps.64.083601
    [10] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [11] 邱超, 张会臣. 正则系综条件下空化空泡形成的分子动力学模拟. 物理学报, 2015, 64(3): 033401. doi: 10.7498/aps.64.033401
    [12] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟. 物理学报, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [13] 刘华敏, 范永胜, 田时海, 周维, 陈旭. 分子动力学模拟压水反应堆中氢气对水的影响. 物理学报, 2012, 61(6): 062801. doi: 10.7498/aps.61.062801
    [14] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究. 物理学报, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [15] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [16] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究. 物理学报, 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [17] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [18] 赵 仁, 张丽春, 张胜利. 正则黑洞熵. 物理学报, 2007, 56(7): 3719-3722. doi: 10.7498/aps.56.3719
    [19] 刘 浩, 柯孚久, 潘 晖, 周 敏. 铜-铝扩散焊及拉伸的分子动力学模拟. 物理学报, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [20] 余大启, 陈 民. 刚性多原子分子的正则系综分子动力学算法. 物理学报, 2006, 55(4): 1628-1633. doi: 10.7498/aps.55.1628
计量
  • 文章访问数:  3524
  • PDF下载量:  509
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-15
  • 修回日期:  2013-09-26
  • 刊出日期:  2013-12-05

Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究

  • 1. 四川大学原子与分子物理研究所, 成都 610065;
  • 2. 四川理工学院理学院, 自贡 643000;
  • 3. 中国工程物理研究院流体物理研究所, 冲击波物理与爆轰物理国防科技重点实验室, 绵阳 621900
    基金项目: 国家自然科学基金(批准号:11176020)资助的课题.

摘要: 在正则系综统下,温度为2000 K时,利用基于密度泛函理论的第一性原理分子动力学计算方法对Al与赤铁矿α-Fe2O3的铝热反应进行了研究. 模拟得出Fe–O键的数量随着时间的增加而减小,Al–O键和Fe–Fe键的数量随时间的增加而增大;同时Fe离子总的电荷量随时间的增加而减小,而Al离子总的电荷量随时间的增加而增大. 模拟结果表明,在Al/Fe2O3铝热反应中发生了氧化还原反应,Al被氧化,Fe离子被还原;在界面处生成Al–O键,Fe–O键发生断裂;氧化还原反应完成需约3 ps.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回