搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子区域内单离子声子激光态的研究

董元章 邓志姣 何思文 李沛东 陈亮 冯芒

引用本文:
Citation:

量子区域内单离子声子激光态的研究

董元章, 邓志姣, 何思文, 李沛东, 陈亮, 冯芒

Single-ion phonon laser in quantum region

Yuanzhang Dong, Zhijiao Deng, Siwen He, Peidong Li, Liang Chen, Mang Feng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 在囚禁离子系统中,基于范德波尔振子机制的单离子声子激光态已在微弱电场测量和弱力检测等领域得到应用。声子激光态作为一种与光子激光的性质类似的相干声子态,通过激光相干边带激励和冷却技术,可以精确调控离子的振动状态,并有望在连续变量量子计算、量子非线性动力学和量子精密测量等领域展现进一步的应用。本文采用三能级模型对单离子量子区域内的声子激光态进行理论研究,通过求解主方程,获得了声子激光态的稳态相图,分析了系统的Wigner准概率分布和二阶关联特性。本文针对离子阱体系提出了实验实现方案,即通过蓝边带激光和红边带激光构成的双色光场共同作用于囚禁的单个40Ca+离子,从而在量子区域内产生声子激光态,并采用特征函数测量法对振动量子态进行表征。
    In trapped ion systems, single-ion phonon lasers based on the van der Pol oscillator mechanism have been applied in fields such as weak electric field measurement and weak force detection. As a coherent source analogous to photon lasers, phonon lasers precisely control the vibrational states of the ions through sideband excitation and cooling techniques, aiming to further extend their applications to areas such as continuous-variable quantum computing, quantum nonlinear dynamics, and quantum precision measurement. This paper presents a theoretical study of single-ion phonon laser in the quantum regime using a three-level model. By solving the master equation, we obtain the steady-state phase diagram for generating the phonon laser and analyze the system's Wigner quasi-probability distribution and second-order correlation properties. Based on the ion trap system, this paper proposes an experimental scheme, namely, using a bichromatic light field composed of a blue-sideband laser and a red-sideband laser acting on a trapped40Ca+ ion, thereby generating a phonon laser in the quantum regime. The vibrational quantum state is then characterized using the characteristic function measurement method.
  • [1]

    Qiao H, Dumur É, Andersson G,Yan H, Chou M H, Grebel J, Conner C R, Joshi Y J, Miller J M, Pover R G, X. Wu, Cleland A N 2023 Science 380 1030-1033.

    [2]

    Kuang T, Huang R, Xiong W, Zuo Y L, Han X, Franco N, Qiu C W, Luo H, Jing H, Xiao G Z 2023 Nat. Phys. 19 414-419.

    [3]

    Xiao G, Kuang T, He Y, Chen X L, Xiong W, Han X, Tan Z Q, Luo H, Jing H 2024 eLight 4 17.

    [4]

    Cleland A Y, Wollack E A, Safavi-Naeini A H 2024 Nat. Commun. 15, 4979.

    [5]

    Wang H M,Liu X B,Hu S Q,Chen D Q,Chen Q,Zhang C,Guan M X,Meng S 2023 Sci. Adv. 9 33.

    [6]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281.

    [7]

    Vahala K, Herrmann M, Knünz S, Batteiger V, Saathoff G, Hänsch T W, Udem Th 2009 Nat. Phys. 5 682–686.

    [8]

    Xie Y, Wan W, Wu H Y, Zhou F, Chen L, Feng M 2013 Phys. Rev. A. 87 053402.

    [9]

    Pikovsky A, Rosenblum M, Kurths J, 2001 Synchronization: A Universal Concept in Nonlinear Sciences(Cambridge: Cambridge University Press).

    [10]

    Lee T, Sadeghpour H 2013 Phys. Rev. Lett. 111 234101.

    [11]

    Knünz S, Herrmann M, Batteiger V, Saathoff1 G, Hänsch T W, Vahala K, Udem Th 2010 Phys. Rev. Lett.105 013004.

    [12]

    Liu Z C, Wei Y Q, Chen L, Li J, Dai S Q, Zhou F, Feng M 2021 Phys. Rev. Appl. 16 044007.

    [13]

    Zhang Q, Yang C, Sheng J, Wu H 2022 Proc. Natl. Acad. Sci. U.S.A. 52 119.

    [14]

    Ripin, A, Peng, R, Zhang, X, Chakravarthi S, He M H, Xu X D, Fu K M, Cao T, Li M 2023 Nat. Nanotechnol. 18 1020–1026.

    [15]

    Haffner H, Roos C F, Blatt R 2008 Phys. Rep. 469 155.

    [16]

    Blatt R, Roos C F 2012 Nat. Phys. 8 277.

    [17]

    Monroe C, Kim J 2013 Science. 339 1164.

    [18]

    Knunz S, Herrmann M, Batteiger V, Saathoff G, Hansch T W, Vahala K, Udem Th. 2010 Phys. Rev. Lett. 105 013004.

    [19]

    Akerman N, Kotler S, Glickman Y, Dallal Y, Keselman A, Ozeri R 2010 Phys. Rev. A. 82 061402.

    [20]

    Lee T E, Cross M C 2011 Phys. Rev. Lett. 106 143001.

    [21]

    Li Y, Li H, Zhu Y, Zhang M, Yang J 2011 Phys. Rev. E. 84 066212.

    [22]

    Lin G D, Duan L M 2011 New J. Phys. 13 075015.

    [23]

    Petri C, Meyer S, Lenz F, Schmelcher P 2011 New J.Phys. 13 023006.

    [24]

    Tony E. Lee, Sadeghpour H R 2013 Phys. Rev. Lett. 111 234101.

    [25]

    Shovan D, Nigel R C 2019 Phys. Rev. Lett. 123 250401.

    [26]

    Christopher W W, Gloria P 2023 Phys. Rev. Res. 5 023021.

    [27]

    Vahala K, Herrmann M, Knünz S, Batteiger V, Saathoff G, Hänsch T W, Udem T 2009 Nat. Phys. 5 682.

    [28]

    Grudinin I S, Lee H, Painter O, Vahala K J 2010 Phys. Rev. Lett. 104 083901.

    [29]

    Kemiktarak U, Durand M, Metcalfe M, Lawall J 2014 Phys. Rev. Lett. 113 030802.

    [30]

    Cohen J D, Meenehan S M, MacCabe G S, Gröblacher S, Safavi-Naeini A H, F. Marsili, Shaw M D, Painter O 2015 Nature. 520 522.

    [31]

    Pettit R M, Ge W, Kumar P, Luntz-Martin D R, Schultz J T, Neukirch L P, Bhattacharya M, Vamivakas A.N. 2019 Nat. Photonics. 13 402.

    [32]

    Wen Y, Ares N, Schupp F J, Pei T, Briggs G A D, Laird E A 2020 Nat. Phys. 16 75.

    [33]

    Zhang Q, Yang C, Sheng J, Wu H 2022 Proc.Natl. Acad.Sci. U.S.A. 119 e2207543119.

    [34]

    Behrle T, Nguyen T, Reiter F, Baur D, de Neeve B, Stadler M, Marinelli M, Lancellotti F, Yelin S, Home J 2023 Phys. Rev. Lett. 131 043605.

    [35]

    Flühmann C, Home J 2020 Phys. Rev. Lett. 125 043602.

    [36]

    He S W 2024 M. Sc. Dissertation (Hunan: National University of Defense Technology) (in Chinese) [何思文 2024 硕士学位论文(湖南:国防科技大学)].

    [37]

    He S W, Deng Z J, Xie Y, Wang Y Y, Chen P X 2024 Opt. Express. 32 13998-14009.

    [38]

    Loudon R 2000 The Quantum Theory of Light (Oxford:Oxford University Press).

    [39]

    Scully M O Zubairy M S 1997 Quantum Optics(Cambridge, England: Cambridge University Press).

    [40]

    Xie J, Zhang A N, Cao N P, Xu H C, Zheng K M, Poon Y T, Sze N S, Xu P, Zeng B, Zhang L J2020 Phys. Rev. Lett. 125 150401

    [41]

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) p126 (in Chinese) [张智明 2015 量子光学 (北京:科学出版社) 第126页].

  • [1] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析. 物理学报, doi: 10.7498/aps.70.20210318
    [2] 李金晴, 罗云荣, 海文华. 囚禁单离子的量子阻尼运动. 物理学报, doi: 10.7498/aps.66.233701
    [3] 梁修东, 台运娇, 程建民, 翟龙华, 许业军. 量子相空间分布函数与压缩相干态表示间的变换关系. 物理学报, doi: 10.7498/aps.64.024207
    [4] 徐学翔, 张英孔, 张浩亮, 陈媛媛. N00N态的Wigner函数及N00N态作为输入的量子干涉. 物理学报, doi: 10.7498/aps.62.114204
    [5] 袁洪春, 徐学翔. 单双模连续压缩真空态及其量子统计性质. 物理学报, doi: 10.7498/aps.61.064205
    [6] 宋军, 范洪义, 周军. 双模压缩数态光场的Wigner函数及其特性. 物理学报, doi: 10.7498/aps.60.110302
    [7] 余海军, 杜建明, 张秀兰. 一类特殊单模压缩态的Wigner函数. 物理学报, doi: 10.7498/aps.60.090305
    [8] 刘王云, 毕思文, 豆西博. 囚禁离子非线性Jaynes-Cummings模型量子场熵演化特性. 物理学报, doi: 10.7498/aps.59.1780
    [9] 宋军, 范洪义. Schwinger Bose实现下自旋相干态Wigner函数的特性分析. 物理学报, doi: 10.7498/aps.59.6806
    [10] 杨美蓉, 海文华, 鲁耿彪, 钟宏华. 激光脉冲作用下囚禁离子在Lamb-Dicke区域精确的量子运动. 物理学报, doi: 10.7498/aps.59.2406
    [11] 蓝海江, 庞华锋, 韦联福. 多光子激发相干态的Wigner函数. 物理学报, doi: 10.7498/aps.58.8281
    [12] 艾凌艳, 杨 健, 张智明. 基于二维囚禁离子实现受控非门、交换门和相位门. 物理学报, doi: 10.7498/aps.57.5589
    [13] 陈文钦, 海文华, 宋建文. 双δ激光脉冲作用下Paul阱中单离子的规则与混沌运动. 物理学报, doi: 10.7498/aps.57.1608
    [14] 陈文钦, 海文华, 李 辉, 马志英. 脉冲式棘齿势场作用下囚禁离子的规则与混沌运动. 物理学报, doi: 10.7498/aps.56.1305
    [15] 孟祥国, 王继锁, 梁宝龙. 增光子奇偶相干态的Wigner函数. 物理学报, doi: 10.7498/aps.56.2160
    [16] 汪仲清, 段昌奎, 安广雷. 囚禁离子的非线性Jaynes-Cummings模型及其布居数反转演化. 物理学报, doi: 10.7498/aps.55.3438
    [17] 曲照军, 柳盛典, 杨传路. 囚禁离子与单模场的相互作用. 物理学报, doi: 10.7498/aps.54.1156
    [18] 杨庆怡, 孙敬文, 韦联福, 丁良恩. 增、减光子奇偶相干态的Wigner函数. 物理学报, doi: 10.7498/aps.54.2704
    [19] 李飞, 海文华. 激光脉冲作用下囚禁离子的规则与混沌运动. 物理学报, doi: 10.7498/aps.53.1309
    [20] 方卯发, 刘翔. 驻波激光场中囚禁离子内外自由度的周期纠缠. 物理学报, doi: 10.7498/aps.50.2363
计量
  • 文章访问数:  61
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-14

/

返回文章
返回