搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子区域内单离子声子激光态的研究

董元章 何思文 邓志姣 李沛东 陈亮 冯芒

引用本文:
Citation:

量子区域内单离子声子激光态的研究

董元章, 何思文, 邓志姣, 李沛东, 陈亮, 冯芒

Single-ion phonon laser in quantum region

DONG Yuanzhang, HE Siwen, DENG Zhijiao, LI Peidong, CHEN Liang, FENG Mang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在囚禁离子系统中, 基于范德波尔振子机制的单离子声子激光态已在微弱电场测量和弱力检测等领域得到应用. 声子激光态作为一种与光子激光的性质类似的相干声子态, 通过激光相干边带激励和冷却技术, 可以精确地调控离子的振动状态, 并有望在连续变量量子计算、量子非线性动力学和量子精密测量等领域展现进一步的应用. 本文采用三能级模型对单离子量子区域内的声子激光态进行理论研究, 通过求解主方程, 获得了声子激光态的稳态相图, 分析了系统的Wigner准概率分布和二阶关联特性. 本文针对离子阱体系提出了实验实现方案, 即通过蓝边带激光和红边带激光构成的双色光场共同作用于囚禁的单个40Ca+离子, 从而在量子区域内产生声子激光态, 并采用特征函数测量法对振动量子态进行表征.
    The quantum phonon laser state is a vibrational state generated by phonon coherent amplification technology based on the principles of quantum mechanics. Its core feature is to achieve coherent excitation and manipulation of phonon quantum states through precise control of phonon dynamics. This technology has broken through the classical physical limits of the traditional phonon laser state, providing a brand-new research method for quantum information technology. Previous research on quantum phonon laser states mainly focused on quantum van der Bohr oscillators. Quantum van der Bohr oscillators, as typical representatives of nonlinear quantum systems, have demonstrated significant theoretical value and broad application prospects in trapped-ion systems in recent years. These research breakthroughs not only successfully expand the research scope of traditional nonlinear dynamics to the quantum domain, but more importantly, provide a brand-new experimental platform and theoretical framework for exploring quantum nonlinear phenomena.Although the realization of quantum phonon laser state has been verified in two-ion systems, its practical application still faces significant challenges. The present paper explores how a single trapped ion generates quantum phonon laser states based on the three-level model. By numerically solving the quantum master equation, the steady-state characteristics of the phonon laser state are systematically analyzed, with a focus on the quantum statistical behavior of the system, including the evolution laws of the Wigner quasi-probability distribution function and the second-order correlation function. This paper also presents a specific experimental scheme, which is based on a single trapped 40Ca+ ion and uses a dual-color light field composed of a blue-sideband and a red-sideband lasers to generate quantum phonon laser states. By introducing the characteristic function of motion quantum states, the precise quantum state tomography of phonon laser states is achieved, thus providing a new approach for characterizing quantum states. In addition, there is a two-level model discussing the threshold effect of phonon lasers. However, it is found that the three-level model constructed in the present paper has significantly different phonon laser thresholds compared with the two-level model, and the three-level model can more accurately describe the physical mechanisms of complex quantum phonon laser states.
  • 图 1  生成量子声子激光态的三能级模型 (a) 双色光场产生声子激光态示意图. 蓝色和红色箭头线分别表示蓝边带加热和红边带冷却的激光场, 加热和冷却相互竞争以保持声子激光态的稳定振幅. (b) 离子能级结构

    Fig. 1.  Three-level model for generating quantum phonon laser. (a) Schematic diagram of phonon laser generated by two-color light field. The ion vibrates in the potential well, where the blue-sideband heating and red-sideband cooling processes of the ion are represented by blue and red arrows, respectively, and the heating and cooling compete with each other to maintain a stable amplitude of the phonon laser. (b) The internal energy level structure of the ion.

    图 2  (a) 相图, 其中横、纵坐标都取以10为底的对数. A区域为热态区域, B区域为声子激光态区域, C区域为结果不收敛区域, 虚曲线L1是热态与声子激光态的分界线, 虚曲线L2则为声子数是否收敛的分界线; (b) 平均声子数随${g_{\text{h}}}$的变化, 其中平均声子数取以10为底的对数. 平均声子数先是快速上升, 之后会迅速收敛至稳定值; (c) D1(–0.824, 0.301)点的稳态Wigner准概率分布, 对应参数为${g_{\text{h}}} = 0.15$, ${g_{\text{c}}} = 2$; (d) D2(0.477, 0.301)点的稳态Wigner准概率分布, 对应参数为${g_{\text{h}}} = 3$, ${g_{\text{c}}} = 2$

    Fig. 2.  (a) Phase diagram, where the horizontal and vertical coordinates and the average number of phonons are denoted by logarithms with base 10. Number of truncation is 600. Region A is the thermal state region, region B is the phonon laser region, and region C is the non-converging region. The dashed curve L1 is the boundary between the thermal state and the phonon laser, and the dashed curve L2 is the boundary between the converging and diverging regions; (b) the mean phonon number changes with ${g_{\text{h}}}$. The average phonon number first goes up quickly, and then converges to a stable value; (c) D1(–0.8239, 0.301) steady state Wigner quasi-probability distribution, with the parameters ${g_{\text{h}}} = 0.15, {\text{ }}{g_{\text{c}}} = 2$; (d) D2(0.4771, 0.301) steady state Wigner quasi-probability distribution, with the parameters ${g_{\text{h}}} = 3, {\text{ }}{g_{\text{c}}} = 2$.

    图 3  二阶关联函数 (a)声子激光态阈值上下的二阶关联函数${g^{(2)}}(\tau )$, 相关参数${g_{\text{c}}} = 1$; (b) 零时间延迟情况下的二阶关联函数${g^{(2)}}(0)$

    Fig. 3.  Second-order correlation function: (a) Second-order correlation function ${g^{(2)}}(\tau )$ above and below the phonon laser threshold, where the parameter is ${g_{\text{c}}} = 1$; (b) second-order correlation function ${g^{(2)}}(0)$ with zero time delay.

    图 4  (a) 40Ca+内部能级结构图. 蓝线和红线分别代表蓝边带加热和红边带冷却. (b)蓝边带加热和红边带冷却过程的示意图

    Fig. 4.  (a) Internal energy level scheme. The blue and red lines represent blue-sideband heating and red-sideband cooling, respectively. (b) Schematic diagram of the blue-sideband heating process and the red-sideband cooling process.

  • [1]

    Qiao H, Dumur É, Andersson G, Yan H, Chou M H, Grebel J, Conner C R, Joshi Y J, Miller J M, Pover R G, X. Wu, Cleland A N 2023 Science 380 1030Google Scholar

    [2]

    Kuang T, Huang R, Xiong W, Zuo Y L, Han X, Franco N, Qiu C W, Luo H, Jing H, Xiao G Z 2023 Nat. Phys. 19 414Google Scholar

    [3]

    Xiao G, Kuang T, He Y, Chen X L, Xiong W, Han X, Tan Z Q, Luo H, Jing H 2024 eLight 4 17Google Scholar

    [4]

    Cleland A Y, Wollack E A, Safavi-Naeini A H 2024 Nat. Commun. 15 4979Google Scholar

    [5]

    Wang H M, Liu X B, Hu S Q, Chen D Q, Chen Q, Zhang C, Guan M X, Meng S 2023 Sci. Adv. 9 33

    [6]

    Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281Google Scholar

    [7]

    Vahala K, Herrmann M, Knünz S, Batteiger V, Saathoff G, Hänsch T W, Udem Th 2009 Nat. Phys. 5 682Google Scholar

    [8]

    Xie Y, Wan W, Wu H Y, Zhou F, Chen L, Feng M 2013 Phys. Rev. A 87 053402Google Scholar

    [9]

    Pikovsky A, Rosenblum M, Kurths J, 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press

    [10]

    Lee T E, Sadeghpour H R 2013 Phys. Rev. Lett. 111 234101Google Scholar

    [11]

    Knünz S, Herrmann M, Batteiger V, Saathoff1 G, Hänsch T W, Vahala K, Udem Th 2010 Phys. Rev. Lett. 105 013004Google Scholar

    [12]

    Liu Z C, Wei Y Q, Chen L, Li J, Dai S Q, Zhou F, Feng M 2021 Phys. Rev. Appl. 16 044007Google Scholar

    [13]

    Zhang Q, Yang C, Sheng J, Wu H 2022 Proc. Natl. Acad. Sci. U. S. A. 52 119

    [14]

    Ripin, A, Peng, R, Zhang, X, Chakravarthi S, He M H, Xu X D, Fu K M, Cao T, Li M 2023 Nat. Nanotechnol. 18 1020Google Scholar

    [15]

    Ha¨ffner H, Roos C F , Blatt R 2008 Phys. Rep. 469 155

    [16]

    Blatt R, Roos C F 2012 Nat. Phys. 8 277Google Scholar

    [17]

    Monroe C, Kim J 2013 Science 339 1164Google Scholar

    [18]

    Knu¨nz S, Herrmann M, Batteiger V, Saathoff G, Ha¨nsch T W , Vahala K, Udem Th 2010 Phys. Rev. Lett. 105 013004

    [19]

    Akerman N, Kotler S, Glickman Y, Dallal Y, Keselman A, Ozeri R 2010 Phys. Rev. A 82 061402Google Scholar

    [20]

    Lee T E, Cross M C 2011 Phys. Rev. Lett. 106 143001Google Scholar

    [21]

    Li Y, Li H, Zhu Y, Zhang M, Yang J 2011 Phys. Rev. E 84 066212Google Scholar

    [22]

    Lin G D, Duan L M 2011 New J. Phys. 13 075015Google Scholar

    [23]

    Petri C, Meyer S, Lenz F, Schmelcher P 2011 New J. Phys. 13 023006Google Scholar

    [24]

    Lee T E, Sadeghpour H R 2013 Phys. Rev. Lett. 111 234101Google Scholar

    [25]

    Dutta S, Cooper N R 2019 Phys. Rev. Lett. 123 250401Google Scholar

    [26]

    Christopher W W, Gloria P 2023 Phys. Rev. Res. 5 023021Google Scholar

    [27]

    Vahala K, Herrmann M, Knünz S, Batteiger V, Saathoff G, Hänsch T W, Udem T 2009 Nat. Phys. 5 682Google Scholar

    [28]

    Grudinin I S, Lee H, Painter O, Vahala K J 2010 Phys. Rev. Lett. 104 083901Google Scholar

    [29]

    Kemiktarak U, Durand M, Metcalfe M, Lawall J 2014 Phys. Rev. Lett. 113 030802Google Scholar

    [30]

    Cohen J D, Meenehan S M, MacCabe G S, Gröblacher S, Safavi-Naeini A H, F. Marsili, Shaw M D, Painter O 2015 Nature 520 522Google Scholar

    [31]

    Pettit R M, Ge W, Kumar P, Luntz-Martin D R, Schultz J T, Neukirch L P, Bhattacharya M, Vamivakas A. N 2019 Nat. Photonics 13 402Google Scholar

    [32]

    Wen Y, Ares N, Schupp F J, Pei T, Briggs G A D, Laird E A 2020 Nat. Phys. 16 75Google Scholar

    [33]

    Zhang Q, Yang C, Sheng J, Wu H 2022 Proc. Natl. Acad. Sci. U. S. A. 119 e2207543119Google Scholar

    [34]

    Behrle T, Nguyen T, Reiter F, Baur D, de Neeve B, Stadler M, Marinelli M, Lancellotti F, Yelin S, Home J 2023 Phys. Rev. Lett. 131 043605Google Scholar

    [35]

    Flühmann C, Home J 2020 Phys. Rev. Lett. 125 043602Google Scholar

    [36]

    He S W, Deng Z J, Xie Y, Wang Y Y, Chen P X 2024 Opt. Express. 32 13998Google Scholar

    [37]

    何思文 2024 硕士学位论文(湖南: 国防科技大学)

    He S W 2024 M. S. Thesis (Hunan: National University of Defense Technology

    [38]

    Loudon R 2000 The Quantum Theory of Light (Oxford: Oxford University Press

    [39]

    Scully M O Zubairy M S 1997 Quantum Optics (Cambridge, England: Cambridge University Press

    [40]

    Xie J, Zhang A N, Cao N P, Xu H C, Zheng K M, Poon Y T, Sze N S, Xu P, Zeng B, Zhang L J 2020 Phys. Rev. Lett. 125 150401Google Scholar

    [41]

    张智明 2015 量子光学(北京: 科学出版社)第126页

    Zhang Z M 2015 Quantum Optics (Beijing: Science Press) p126

  • [1] 李庆回, 姚文秀, 李番, 田龙, 王雅君, 郑耀辉. 明亮压缩态光场的操控及量子层析. 物理学报, doi: 10.7498/aps.70.20210318
    [2] 李金晴, 罗云荣, 海文华. 囚禁单离子的量子阻尼运动. 物理学报, doi: 10.7498/aps.66.233701
    [3] 梁修东, 台运娇, 程建民, 翟龙华, 许业军. 量子相空间分布函数与压缩相干态表示间的变换关系. 物理学报, doi: 10.7498/aps.64.024207
    [4] 徐学翔, 张英孔, 张浩亮, 陈媛媛. N00N态的Wigner函数及N00N态作为输入的量子干涉. 物理学报, doi: 10.7498/aps.62.114204
    [5] 袁洪春, 徐学翔. 单双模连续压缩真空态及其量子统计性质. 物理学报, doi: 10.7498/aps.61.064205
    [6] 宋军, 范洪义, 周军. 双模压缩数态光场的Wigner函数及其特性. 物理学报, doi: 10.7498/aps.60.110302
    [7] 余海军, 杜建明, 张秀兰. 一类特殊单模压缩态的Wigner函数. 物理学报, doi: 10.7498/aps.60.090305
    [8] 刘王云, 毕思文, 豆西博. 囚禁离子非线性Jaynes-Cummings模型量子场熵演化特性. 物理学报, doi: 10.7498/aps.59.1780
    [9] 宋军, 范洪义. Schwinger Bose实现下自旋相干态Wigner函数的特性分析. 物理学报, doi: 10.7498/aps.59.6806
    [10] 杨美蓉, 海文华, 鲁耿彪, 钟宏华. 激光脉冲作用下囚禁离子在Lamb-Dicke区域精确的量子运动. 物理学报, doi: 10.7498/aps.59.2406
    [11] 蓝海江, 庞华锋, 韦联福. 多光子激发相干态的Wigner函数. 物理学报, doi: 10.7498/aps.58.8281
    [12] 艾凌艳, 杨 健, 张智明. 基于二维囚禁离子实现受控非门、交换门和相位门. 物理学报, doi: 10.7498/aps.57.5589
    [13] 陈文钦, 海文华, 宋建文. 双δ激光脉冲作用下Paul阱中单离子的规则与混沌运动. 物理学报, doi: 10.7498/aps.57.1608
    [14] 陈文钦, 海文华, 李 辉, 马志英. 脉冲式棘齿势场作用下囚禁离子的规则与混沌运动. 物理学报, doi: 10.7498/aps.56.1305
    [15] 孟祥国, 王继锁, 梁宝龙. 增光子奇偶相干态的Wigner函数. 物理学报, doi: 10.7498/aps.56.2160
    [16] 汪仲清, 段昌奎, 安广雷. 囚禁离子的非线性Jaynes-Cummings模型及其布居数反转演化. 物理学报, doi: 10.7498/aps.55.3438
    [17] 曲照军, 柳盛典, 杨传路. 囚禁离子与单模场的相互作用. 物理学报, doi: 10.7498/aps.54.1156
    [18] 杨庆怡, 孙敬文, 韦联福, 丁良恩. 增、减光子奇偶相干态的Wigner函数. 物理学报, doi: 10.7498/aps.54.2704
    [19] 李飞, 海文华. 激光脉冲作用下囚禁离子的规则与混沌运动. 物理学报, doi: 10.7498/aps.53.1309
    [20] 方卯发, 刘翔. 驻波激光场中囚禁离子内外自由度的周期纠缠. 物理学报, doi: 10.7498/aps.50.2363
计量
  • 文章访问数:  336
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-07
  • 修回日期:  2025-08-01
  • 上网日期:  2025-08-14

/

返回文章
返回