-
在囚禁离子系统中,基于范德波尔振子机制的单离子声子激光态已在微弱电场测量和弱力检测等领域得到应用。声子激光态作为一种与光子激光的性质类似的相干声子态,通过激光相干边带激励和冷却技术,可以精确调控离子的振动状态,并有望在连续变量量子计算、量子非线性动力学和量子精密测量等领域展现进一步的应用。本文采用三能级模型对单离子量子区域内的声子激光态进行理论研究,通过求解主方程,获得了声子激光态的稳态相图,分析了系统的Wigner准概率分布和二阶关联特性。本文针对离子阱体系提出了实验实现方案,即通过蓝边带激光和红边带激光构成的双色光场共同作用于囚禁的单个40Ca+离子,从而在量子区域内产生声子激光态,并采用特征函数测量法对振动量子态进行表征。In trapped ion systems, single-ion phonon lasers based on the van der Pol oscillator mechanism have been applied in fields such as weak electric field measurement and weak force detection. As a coherent source analogous to photon lasers, phonon lasers precisely control the vibrational states of the ions through sideband excitation and cooling techniques, aiming to further extend their applications to areas such as continuous-variable quantum computing, quantum nonlinear dynamics, and quantum precision measurement. This paper presents a theoretical study of single-ion phonon laser in the quantum regime using a three-level model. By solving the master equation, we obtain the steady-state phase diagram for generating the phonon laser and analyze the system's Wigner quasi-probability distribution and second-order correlation properties. Based on the ion trap system, this paper proposes an experimental scheme, namely, using a bichromatic light field composed of a blue-sideband laser and a red-sideband laser acting on a trapped40Ca+ ion, thereby generating a phonon laser in the quantum regime. The vibrational quantum state is then characterized using the characteristic function measurement method.
-
Keywords:
- Trapped ions /
- Wigner function /
- phonon laser
-
[1] Qiao H, Dumur É, Andersson G,Yan H, Chou M H, Grebel J, Conner C R, Joshi Y J, Miller J M, Pover R G, X. Wu, Cleland A N 2023 Science 380 1030-1033.
[2] Kuang T, Huang R, Xiong W, Zuo Y L, Han X, Franco N, Qiu C W, Luo H, Jing H, Xiao G Z 2023 Nat. Phys. 19 414-419.
[3] Xiao G, Kuang T, He Y, Chen X L, Xiong W, Han X, Tan Z Q, Luo H, Jing H 2024 eLight 4 17.
[4] Cleland A Y, Wollack E A, Safavi-Naeini A H 2024 Nat. Commun. 15, 4979.
[5] Wang H M,Liu X B,Hu S Q,Chen D Q,Chen Q,Zhang C,Guan M X,Meng S 2023 Sci. Adv. 9 33.
[6] Leibfried D, Blatt R, Monroe C, Wineland D 2003 Rev. Mod. Phys. 75 281.
[7] Vahala K, Herrmann M, Knünz S, Batteiger V, Saathoff G, Hänsch T W, Udem Th 2009 Nat. Phys. 5 682–686.
[8] Xie Y, Wan W, Wu H Y, Zhou F, Chen L, Feng M 2013 Phys. Rev. A. 87 053402.
[9] Pikovsky A, Rosenblum M, Kurths J, 2001 Synchronization: A Universal Concept in Nonlinear Sciences(Cambridge: Cambridge University Press).
[10] Lee T, Sadeghpour H 2013 Phys. Rev. Lett. 111 234101.
[11] Knünz S, Herrmann M, Batteiger V, Saathoff1 G, Hänsch T W, Vahala K, Udem Th 2010 Phys. Rev. Lett.105 013004.
[12] Liu Z C, Wei Y Q, Chen L, Li J, Dai S Q, Zhou F, Feng M 2021 Phys. Rev. Appl. 16 044007.
[13] Zhang Q, Yang C, Sheng J, Wu H 2022 Proc. Natl. Acad. Sci. U.S.A. 52 119.
[14] Ripin, A, Peng, R, Zhang, X, Chakravarthi S, He M H, Xu X D, Fu K M, Cao T, Li M 2023 Nat. Nanotechnol. 18 1020–1026.
[15] Haffner H, Roos C F, Blatt R 2008 Phys. Rep. 469 155.
[16] Blatt R, Roos C F 2012 Nat. Phys. 8 277.
[17] Monroe C, Kim J 2013 Science. 339 1164.
[18] Knunz S, Herrmann M, Batteiger V, Saathoff G, Hansch T W, Vahala K, Udem Th. 2010 Phys. Rev. Lett. 105 013004.
[19] Akerman N, Kotler S, Glickman Y, Dallal Y, Keselman A, Ozeri R 2010 Phys. Rev. A. 82 061402.
[20] Lee T E, Cross M C 2011 Phys. Rev. Lett. 106 143001.
[21] Li Y, Li H, Zhu Y, Zhang M, Yang J 2011 Phys. Rev. E. 84 066212.
[22] Lin G D, Duan L M 2011 New J. Phys. 13 075015.
[23] Petri C, Meyer S, Lenz F, Schmelcher P 2011 New J.Phys. 13 023006.
[24] Tony E. Lee, Sadeghpour H R 2013 Phys. Rev. Lett. 111 234101.
[25] Shovan D, Nigel R C 2019 Phys. Rev. Lett. 123 250401.
[26] Christopher W W, Gloria P 2023 Phys. Rev. Res. 5 023021.
[27] Vahala K, Herrmann M, Knünz S, Batteiger V, Saathoff G, Hänsch T W, Udem T 2009 Nat. Phys. 5 682.
[28] Grudinin I S, Lee H, Painter O, Vahala K J 2010 Phys. Rev. Lett. 104 083901.
[29] Kemiktarak U, Durand M, Metcalfe M, Lawall J 2014 Phys. Rev. Lett. 113 030802.
[30] Cohen J D, Meenehan S M, MacCabe G S, Gröblacher S, Safavi-Naeini A H, F. Marsili, Shaw M D, Painter O 2015 Nature. 520 522.
[31] Pettit R M, Ge W, Kumar P, Luntz-Martin D R, Schultz J T, Neukirch L P, Bhattacharya M, Vamivakas A.N. 2019 Nat. Photonics. 13 402.
[32] Wen Y, Ares N, Schupp F J, Pei T, Briggs G A D, Laird E A 2020 Nat. Phys. 16 75.
[33] Zhang Q, Yang C, Sheng J, Wu H 2022 Proc.Natl. Acad.Sci. U.S.A. 119 e2207543119.
[34] Behrle T, Nguyen T, Reiter F, Baur D, de Neeve B, Stadler M, Marinelli M, Lancellotti F, Yelin S, Home J 2023 Phys. Rev. Lett. 131 043605.
[35] Flühmann C, Home J 2020 Phys. Rev. Lett. 125 043602.
[36] He S W 2024 M. Sc. Dissertation (Hunan: National University of Defense Technology) (in Chinese) [何思文 2024 硕士学位论文(湖南:国防科技大学)].
[37] He S W, Deng Z J, Xie Y, Wang Y Y, Chen P X 2024 Opt. Express. 32 13998-14009.
[38] Loudon R 2000 The Quantum Theory of Light (Oxford:Oxford University Press).
[39] Scully M O Zubairy M S 1997 Quantum Optics(Cambridge, England: Cambridge University Press).
[40] Xie J, Zhang A N, Cao N P, Xu H C, Zheng K M, Poon Y T, Sze N S, Xu P, Zeng B, Zhang L J2020 Phys. Rev. Lett. 125 150401
[41] Zhang Z M 2015 Quantum Optics (Beijing: Science Press) p126 (in Chinese) [张智明 2015 量子光学 (北京:科学出版社) 第126页].
计量
- 文章访问数: 61
- PDF下载量: 2
- 被引次数: 0