搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋简并节线半金属中表面态诱导的自旋相关散射

刘力硕 陈伟

引用本文:
Citation:

自旋简并节线半金属中表面态诱导的自旋相关散射

刘力硕, 陈伟

Spin-dependent scattering induced by surface states in spin-degenerate nodal-line semimetal

Liu Li-Shuo, Chen Wei
PDF
HTML
导出引用
  • 拓扑节线半金属指的是电子的导带和价带在倒空间相交于一维的环或者线, 其体能带拓扑体现在节线携带π的贝里相位. 根据体边对应原理, 在系统边界存在色散较弱的表面态, 由节线在表面布里渊区的投影所包围, 称为鼓面态. 大部分节线半金属中, 自旋-轨道耦合效应较弱, 因此在单粒子图像下表面态不存在自旋构型. 与此同时, 鼓面态特有的弱散射也使得其中的电子间相互作用效应变得显著, 并诱发铁磁失稳使得自旋简并的表面态发生自旋劈裂. 本文考虑自旋简并的节线半金属中铁磁表面态导致的自旋相关散射, 发现自旋劈裂的两个鼓面态均会导致共振的自旋翻转反射, 该物理过程体现为自旋电导谱中的双峰结构. 具体地, 分别用散射矩阵和格林函数理论处理了普通金属和节线半金属异质结中表面态导致的散射问题, 得到一致的结论. 本文的工作指出了自旋简并节线半金属表面态依旧可以导致自旋相关输运, 这为其输运探测和在自旋电子中的应用提供了新的思路.
    The topological nodal-line semimetal is characterized by the conduction band and valence band of electrons crossing along a one-dimensional line or closed loop in reciprocal space, with each nodal line carrying Π Berry phase. According to bulk-boundary correspondence, there exist drumheadlike surface states with weak dispersion at the boundary of system, surrounded by the projection of nodal loops onto the surface Brillouin zone. In most of nodal-line semimetals, the spin orbit coupling effect is weak, leading to the absence of a spin configuration for surface states under the single-particle picture. However, the featured weak dispersion of drumheadlike surface states enhances the electron-electron interaction effect, which triggers out ferromagnetic instability and causes spin splitting in the surface state. In this work, spin-dependent scattering caused by ferromagnetic surface states in spin-degenerate nodal-line semimetals is considered. It is found that both spin-splitting drumheadlike surface states can lead to resonant spin-flipped reflection. This physical process is reflected in a double-peak structure in the spin conductance spectrum. Specifically, we deal with the scattering problem induced by surface states in normal metal and nodal-line semimetal heterojunctions by using the scattering matrix and the Green’s functions theory, respectively, and obtain consistent conclusions. The result points out that spin-degenerate nodal-line semimetal surface states can still lead to spin-dependent transport, which provides a new perspective for the detection and potential application of spintronics in nodal-line semimetals.
      通信作者: 陈伟, pchenweis@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 12074172, 12222406)资助的课题.
      Corresponding author: Chen Wei, pchenweis@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074172, 12222406).
    [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    初纯光, 王安琦, 廖志敏 2023 物理学报 72 087401Google Scholar

    Chu C G, Wang A Q, Liao Z M 2023 Acta Phys. Sin. 72 087401Google Scholar

    [4]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [5]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [6]

    Halperin B I 1982 Phys. Rev. B 25 2185Google Scholar

    [7]

    耿逸飞, 王铸宁, 马耀光, 高飞 2019 物理学报 68 224101Google Scholar

    Geng Y F, Wang Z N, Ma Y G, Gao F 2019 Acta Phys. Sin. 68 224101Google Scholar

    [8]

    Xue S W, Wang M Y, Zhang S Y, Jia X, Zhou J H, Shi Y G, Zhu X T, Yao Y G, Guo J D 2021 Phys. Rev. Lett. 127 186802Google Scholar

    [9]

    Weng H M, Dai X, Fang Z 2016 J. Phys. Condens. Matter 28 303001Google Scholar

    [10]

    Murakami S 2007 New J. Phys. 9 356Google Scholar

    [11]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [12]

    Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029Google Scholar

    [13]

    Burkov A A, Hook M D, Balents L 2011 Phys. Rev. B 84 235126Google Scholar

    [14]

    Weng H M, Liang Y Y, Xu Q N, Fang Z, Dai X, Kawazoe Y 2015 Phys. Rev. B 92 045108Google Scholar

    [15]

    Bian G, Chang T R, Sankar R, Xv S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G Q, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B K, Lee C C, Jeng H T, Zhang C L, Yuan Z J, Jia S, Bansil A, Chou F C, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556Google Scholar

    [16]

    Schoop L M, Ali M N, Straber C, Andreas T, Varykhalov A, Marchenko D, Duppel V, Parkin S S, Lotsch B V, Ast C R 2016 Nat. Commun. 7 11696Google Scholar

    [17]

    Takane D, Wang Z W, Souma S, Nakayama K, Trang C X, Sato T, Takahashi T, Ando Y 2016 Phys. Rev. B 94 121108(RGoogle Scholar

    [18]

    Hu J, Tang Z J, Liu J Y, Liu X, Zhu Y L, Graf D, Myhro K, Tran S, Lau C N, Wei J, Mao Z Q 2016 Phys. Rev. Lett. 117 016602Google Scholar

    [19]

    Kumar N, Manna K, Qi Y P, Wu S C, Wang L, Yan B H, Felser C, Shekhar C 2017 Phys. Rev. B 95 121109(RGoogle Scholar

    [20]

    Chen W, Luo K, Li L, Zilberberg O 2018 Phys. Rev. Lett. 121 166802Google Scholar

    [21]

    Liu J P, Balents L 2017 Phys. Rev. B 95 075426Google Scholar

    [22]

    Song C Y, Liu L L, Cui S T, Gao J J, Song P B, Jin L, Zhao W J, Sun Z, Zhang X M, Zhao L, Luo X, Sun Y P, Shi Y G, Zhang H J, Liu G D, Zhou X J 2023 Phys. Rev. B 107 045142Google Scholar

    [23]

    Chan Y H, Chiu C K, Chou M Y, Schnyder A P 2016 Phys. Rev. B 93 205132Google Scholar

    [24]

    Ryu S, Hatsugai Y 2002 Phys. Rev. Lett. 89 077002Google Scholar

    [25]

    Hirayama M, Okugawa R, Miyake T, Murakami S 2017 Nat. Commun. 8 14022Google Scholar

    [26]

    Mahan G D 2000 Many-Particle Physics (New York: Kluwer Academic/Plenum Publishers) p414

    [27]

    Chen W, Lado J L 2019 Phys. Rev. Lett. 122 016803Google Scholar

    [28]

    BenDaniel D J, Duke C B 1966 Phys. Rev. 152 683Google Scholar

    [29]

    Zulicke U, Schroll C 2002 Phys. Rev. Lett. 88 029701Google Scholar

    [30]

    Ryndyk D A 2016 Theory of Quantum Transport at Nanoscale: An Introduction (Springer International, Cham) p90

    [31]

    Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press) P239

  • 图 1  节线半金属鼓面态自旋劈裂示意图. 绿色实线表示节线环, 饼型圆盘表示劈裂后的鼓面态色散关系

    Fig. 1.  Schematic diagram for the spin splitting of the drumheadlike surface states. The green solid line represents the nodal loop, and the pie-shaped disk represents the dispersion relationship of the spin-splitting drumheadlike surface states

    图 2  电子自旋翻转反射与能量的依赖关系. θ 为入射电子与z方向夹角, $\varDelta_0=\varDelta({\boldsymbol{k}}_{/ /}=0)$是电子垂直入射时的有效能隙. 相关参数取$ B=C=1\; {\rm{eV}}{\cdot} {\rm{nm}}^2 $, $ \lambda=0.01\; {\rm{eV}}{\cdot} {\rm{nm}} $, $|{\boldsymbol{k}}_{\rm{F}}|=1.1 k_0=1.54\; {\rm{nm}}^{-1}$, $ D=3\; {\rm{eV}} $

    Fig. 2.  Probability of electron spin-flipped reflection $ R_{\rm{f }}$ vs. E for different angles of incidence θ (relative to z axis). $\varDelta_0$ is the effective energy gap when θ is zero. Relevant parameters take: $ B=C=1\; {\rm{eV}}{\cdot}{\rm{ nm}}^2 $, $ \lambda=0.01\; {\rm{eV}}{\cdot}{\rm{nm}} $, $ |{\boldsymbol{k}}_{\rm{F}}|= $$ 1.1 k_0=1.54\;{\rm{ nm}}^{-1} $, $ D=3\;{\rm{ eV}} $

    图 3  隧穿哈密顿量方法求得的自旋翻转反射系数. 相关参数取$ E_-=-E_+=8\; {\rm{meV}} $, $ \varGamma=0.5 $, $ 3.0 $, $ 5.5\, {\rm{meV}} $

    Fig. 3.  Probability of spin-flipped reflection solved by Green's function as a function of energy with the following parameters: $ E_- = -E_+ = 8\; {\rm{meV}} $, $\varGamma = 0.5$, $ 3.0 $, $ 5.5\; {\rm{meV}} $

    图 4  自旋电导、电荷电导与能量的依赖关系. 实线表示鼓面态无色散, 虚线表示鼓面态存在色散. 相关参数取$ B=C= $$ 1\; {\rm{eV}}{\cdot} {\rm{nm}}^2 $, $ \lambda=0.01\; {\rm{eV}}{\cdot}{\rm{ nm}} $, $ |{\boldsymbol{k}}_{\rm{F}}|=1.1 k_0=1.54\; {\rm{nm}}^{-1} $, $ D= $$ 3\; {\rm{eV}} $, $ a=2\; {\rm{meV}}{\cdot} {\rm{nm}}^2 $

    Fig. 4.  Spin (charge) conductance as a function of energy with (without) drumheadlike surface states dispersion. Relevant parameters take: $ B=C=1\;{\rm{ eV}}{\cdot }{\rm{nm}}^2 $, $ \lambda=0.01\; {\rm{eV}}{\cdot }{\rm{nm}} $, $ |{\boldsymbol{k}}_{\rm{F}}|=1.1 k_0=1.54\; {\rm{nm}}^{-1} $, $ D=3\; {\rm{eV}} $, $ a=2\; {\rm{meV}}{\cdot} {\rm{nm}}^2 $

  • [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [3]

    初纯光, 王安琦, 廖志敏 2023 物理学报 72 087401Google Scholar

    Chu C G, Wang A Q, Liao Z M 2023 Acta Phys. Sin. 72 087401Google Scholar

    [4]

    Klitzing K V, Dorda G, Pepper M 1980 Phys. Rev. Lett. 45 494Google Scholar

    [5]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [6]

    Halperin B I 1982 Phys. Rev. B 25 2185Google Scholar

    [7]

    耿逸飞, 王铸宁, 马耀光, 高飞 2019 物理学报 68 224101Google Scholar

    Geng Y F, Wang Z N, Ma Y G, Gao F 2019 Acta Phys. Sin. 68 224101Google Scholar

    [8]

    Xue S W, Wang M Y, Zhang S Y, Jia X, Zhou J H, Shi Y G, Zhu X T, Yao Y G, Guo J D 2021 Phys. Rev. Lett. 127 186802Google Scholar

    [9]

    Weng H M, Dai X, Fang Z 2016 J. Phys. Condens. Matter 28 303001Google Scholar

    [10]

    Murakami S 2007 New J. Phys. 9 356Google Scholar

    [11]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [12]

    Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 011029Google Scholar

    [13]

    Burkov A A, Hook M D, Balents L 2011 Phys. Rev. B 84 235126Google Scholar

    [14]

    Weng H M, Liang Y Y, Xu Q N, Fang Z, Dai X, Kawazoe Y 2015 Phys. Rev. B 92 045108Google Scholar

    [15]

    Bian G, Chang T R, Sankar R, Xv S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G Q, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B K, Lee C C, Jeng H T, Zhang C L, Yuan Z J, Jia S, Bansil A, Chou F C, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556Google Scholar

    [16]

    Schoop L M, Ali M N, Straber C, Andreas T, Varykhalov A, Marchenko D, Duppel V, Parkin S S, Lotsch B V, Ast C R 2016 Nat. Commun. 7 11696Google Scholar

    [17]

    Takane D, Wang Z W, Souma S, Nakayama K, Trang C X, Sato T, Takahashi T, Ando Y 2016 Phys. Rev. B 94 121108(RGoogle Scholar

    [18]

    Hu J, Tang Z J, Liu J Y, Liu X, Zhu Y L, Graf D, Myhro K, Tran S, Lau C N, Wei J, Mao Z Q 2016 Phys. Rev. Lett. 117 016602Google Scholar

    [19]

    Kumar N, Manna K, Qi Y P, Wu S C, Wang L, Yan B H, Felser C, Shekhar C 2017 Phys. Rev. B 95 121109(RGoogle Scholar

    [20]

    Chen W, Luo K, Li L, Zilberberg O 2018 Phys. Rev. Lett. 121 166802Google Scholar

    [21]

    Liu J P, Balents L 2017 Phys. Rev. B 95 075426Google Scholar

    [22]

    Song C Y, Liu L L, Cui S T, Gao J J, Song P B, Jin L, Zhao W J, Sun Z, Zhang X M, Zhao L, Luo X, Sun Y P, Shi Y G, Zhang H J, Liu G D, Zhou X J 2023 Phys. Rev. B 107 045142Google Scholar

    [23]

    Chan Y H, Chiu C K, Chou M Y, Schnyder A P 2016 Phys. Rev. B 93 205132Google Scholar

    [24]

    Ryu S, Hatsugai Y 2002 Phys. Rev. Lett. 89 077002Google Scholar

    [25]

    Hirayama M, Okugawa R, Miyake T, Murakami S 2017 Nat. Commun. 8 14022Google Scholar

    [26]

    Mahan G D 2000 Many-Particle Physics (New York: Kluwer Academic/Plenum Publishers) p414

    [27]

    Chen W, Lado J L 2019 Phys. Rev. Lett. 122 016803Google Scholar

    [28]

    BenDaniel D J, Duke C B 1966 Phys. Rev. 152 683Google Scholar

    [29]

    Zulicke U, Schroll C 2002 Phys. Rev. Lett. 88 029701Google Scholar

    [30]

    Ryndyk D A 2016 Theory of Quantum Transport at Nanoscale: An Introduction (Springer International, Cham) p90

    [31]

    Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press) P239

  • [1] 魏陆军, 李阳辉, 普勇. 基于外尔半金属WTe2的自旋-轨道矩驱动磁矩翻转. 物理学报, 2024, 73(1): 018501. doi: 10.7498/aps.73.20231836
    [2] 朱庞栋, 王长昊, 王如志. 节线半金属AlB2水环境下发生吸附后拓扑表面态变化. 物理学报, 2024, 73(12): 127101. doi: 10.7498/aps.73.20240404
    [3] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长. 物理学报, 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [4] 詹绍康, 王金东, 董双, 黄偲颖, 侯倾城, 莫乃达, 弥赏, 向黎冰, 赵天明, 於亚飞, 魏正军, 张智明. 基于四态协议的半量子密钥分发诱骗态模型的有限码长分析. 物理学报, 2023, 72(22): 220303. doi: 10.7498/aps.72.20230849
    [5] 劳斌, 郑轩, 李晟, 汪志明. 过渡金属氧化物中新奇量子态与电荷-自旋互转换研究进展. 物理学报, 2023, 72(9): 097702. doi: 10.7498/aps.72.20222219
    [6] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [7] 王珊珊, 吴维康, 杨声远. 拓扑节线与节面金属的研究进展. 物理学报, 2019, 68(22): 227101. doi: 10.7498/aps.68.20191538
    [8] 赵文静, 文灵华. 半无限深势阱中自旋相关玻色-爱因斯坦凝聚体的量子反射与干涉. 物理学报, 2017, 66(23): 230301. doi: 10.7498/aps.66.230301
    [9] 张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉. 平面金属等离激元美特材料对光学Tamm态及相关激射行为的增强作用. 物理学报, 2015, 64(11): 114202. doi: 10.7498/aps.64.114202
    [10] 薄丽娟, 陈艳荣, 王培杰, 方炎. 咔唑分子拉曼激发虚态的相关研究. 物理学报, 2011, 60(12): 123301. doi: 10.7498/aps.60.123301
    [11] 梅烨, 陈亮, 曹永珍, 刘宝琴, 何军辉, 朱增伟, 许祝安. SrMn0.5Fe0.5O3的自旋玻璃态和过渡金属离子价态的研究. 物理学报, 2010, 59(4): 2795-2800. doi: 10.7498/aps.59.2795
    [12] 於乾英, 张金仓, 贾蓉蓉, 敬 超, 曹世勋. 多自旋态离子Co替代诱导La2/3Ca1/3MnO3体系的输运反常. 物理学报, 2008, 57(1): 453-459. doi: 10.7498/aps.57.453
    [13] 邱梅清, 方明虎. Eu2-xPbxRu2O7中的金属-绝缘体相变和自旋玻璃态行为. 物理学报, 2006, 55(9): 4912-4917. doi: 10.7498/aps.55.4912
    [14] 李晓薇, 刘淑静. 正常金属/自旋三重态p波超导体结隧道谱的奇异性. 物理学报, 2006, 55(2): 834-838. doi: 10.7498/aps.55.834
    [15] 陈卫平, 冯尚申, 焦正宽. Fe15.16Ag84.84金属颗粒膜自旋极化相关的霍尔效应研究. 物理学报, 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [16] 陈志谦, 郑仁蓉. 金属小粒子不同自旋态超导电性统计系综研究. 物理学报, 2002, 51(7): 1604-1607. doi: 10.7498/aps.51.1604
    [17] 姚春梅, 郭光灿. 压缩相干态腔场的类自旋GHZ态的制备. 物理学报, 2001, 50(1): 59-62. doi: 10.7498/aps.50.59
    [18] 董正超, 盛利, 邢定钰, 董锦明. 金属薄膜的量子输运理论. 物理学报, 1997, 46(3): 568-578. doi: 10.7498/aps.46.568
    [19] 帅志刚, 孙鑫, 傅柔励. 激发态的相关基函数理论. 物理学报, 1989, 38(10): 1648-1657. doi: 10.7498/aps.38.1648
    [20] 吴自玉, 汪克林. 弯曲时空的半整数自旋场方程. 物理学报, 1985, 34(5): 588-593. doi: 10.7498/aps.34.588
计量
  • 文章访问数:  2713
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-20
  • 修回日期:  2023-07-27
  • 上网日期:  2023-08-02
  • 刊出日期:  2023-09-05

/

返回文章
返回