搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同轴包覆纳米管对断裂纳米管内水传输的影响研究

孟现文

引用本文:
Citation:

同轴包覆纳米管对断裂纳米管内水传输的影响研究

孟现文

Water transport through disjoint nanochannels mediated by covering a coaxial nanochannel

MENG Xianwen
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 在大裂隙的断裂纳米管的连接处存在断裂的水桥,这使得水分子难以通过断裂纳米管。即使在断裂纳米管施加较强的压强差,水分子依然难以通过某些断裂纳米管。修复断裂纳米管连接处的水桥是实现断裂纳米管内水传输的关键。目前模拟证实施加匀强电场或太赫兹电场能够修复大裂隙断裂纳米管连接处的水桥,但这些方法是被动式修复断裂纳米管连接处的水桥,一旦关闭电场,裂隙位置会复现断裂的水桥。本文提出了通过在大裂隙纳米管外同轴包覆一条完整的纳米管的方法,实现一种主动修复断裂纳米管连接处的水桥。包覆纳米管的直径影响断裂纳米管内水分子的占据数、单位时间流量、运动速度及结构。本文对修复断裂纳米管连接处的水桥提供了一种新的角度。
    The challenge of transporting water molecules through one-dimensional large disjoint nanochannels arises from the break of the water bridge. Even under significant pressure differences, water molecules are difficult to transport through these large disjoint nanochannels. Restoring the broken water bridge is crucial for maintaining continuous water transport through disjoint nanochannels. Current repair methods, including the application of uniform or terahertz electric fields, are passive solutions that cease to work once the fields are removed, resulting in the reappearance of the broken bridge. In this study, molecular dynamics simulations are employed to investigate water transport through disjoint nanochannels featuring a large nanogap, mediated by covering a coaxial nanochannel. The results reveal that as the diameter of the covered nanochannel decreases, the peak interaction between water molecules and the nanochannel decreases, facilitating the reformation of the water bridge within the nanogap region. The water transfer rate through the disjoint nanochannel exhibits a non-monotonic dependence on the covered nanochannel diameter: it increases rapidly initially, then decreases with further diameter expansion, eventually reaching a relatively stable flow rate. Increasing the diameter of the covered nanochannel enhances water occupancy within the disjoint nanochannel, while the velocity and order parameter of water molecules display an initial increase followed by a decrease with further diameter expansion. These results provide significant insights into understanding the influence of covered nanochannels on water transport through disjoint nanochannels and developing novel approaches for repairing broken water bridges in disjoint nanochannel systems
  • [1]

    Sun Z W, He Y, Tang Y Z 2021 Acta Phys. Sin. 70 060201 (in Chinese) [孙志伟, 何燕, 唐元政 2021 物理学报 70 060201]

    [2]

    Zhang Q L, Wang R F, Zhou T, Wang Y J, Liu Q 2023 Acta Phys. Sin. 72 084207 (in Chinese)[章其林,王瑞丰,周同,王允杰,刘琪 2023 物理学报 72 084207]

    [3]

    Lau A W C, Sokoloff J B, 2024 Phys. Rev. Lett. 132 194001

    [4]

    Wang Z H, Liu Y, Li Y Q, Qu Y Y, Zhou R H, Zhao M W, Li W F, 2025 Nano Lett. 25 8458

    [5]

    Sahimi M, Ebrahimi F, 2019 Phys. Rev. Lett. 122 214506

    [6]

    Tao J B, Song X Y, Bao B, Zhao S L, Liu H L, 2020 Chem. Eng. Sci. 219 115602

    [7]

    Li W J, Zhou X Y, Lu H J, 2024 Acta Phys. Sin. 73 094702 (in Chinese) [ 李伟健, 周晓艳, 陆杭军 2024 物理学报 73 094702]

    [8]

    Liu Y, Zhu W D, Jiang J, Zhu C Q, Liu C, Slater B, Ojamae L, Francisco J S, Zeng X C, 2021 P. Natl. Acad. Sci. USA 118 e2104442118

    [9]

    Camargo A P, Jusufi A, Lee A G, Koplik J, Morris J F, Giovambattista N, 2024 Langmuir, 40 18439

    [10]

    Liu Y, Jiang J, Pu Y Y, Francisco J S, Zeng X C, 2023 ACS Nano 17 6922

    [11]

    Du W, Wang Y J, Yang J W, Chen J G, 2024, Phys. Rev. E 109 L062103

    [12]

    Kohler M H, da Silva L B, 2016 Chem. Phys. Lett. 645 38

    [13]

    Zhao K W, Wu H Y, Han B S, 2017 J. Chem. Phys. 147 164705

    [14]

    Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H F, Bao Z N, 2011 Nat. Nanotechnol. 6 788

    [15]

    Tunuguntla R H, Henley R Y, Yao Y C, Pham T A, Wanunu M, Noy A, 2017 Science 357 792

    [16]

    Martincic M, Tobias G, 2015 Expert Opin. Drug Del. 12 563

    [17]

    Mun T J, Kim S H, Park J W, Moon J H, Jang Y, Huynh C, Baughman R H, Kim S J, 2020 Adv. Funct. Mater. 30 2000411

    [18]

    Li J Y, Yang Z X, Fang H P, Zhou R H, Tang X W, 2007 Chin. Phys. Lett. 24 2710

    [19]

    Liu Y C, Wang Q, 2005 Phys. Rev. B 72 085420

    [20]

    Sam A, Prasad K V, Sathian S P, 2019 Phys. Chem. Chem. Phys. 21 6566

    [21]

    Qiu T, Meng X W, Huang J P, 2015 J. Phys. Chem. B 119 1496

    [22]

    Meng X W, Wang L Y, 2023 Chem. Phys. Lett. 829 140765

    [23]

    Meng X W, Wang L Y, 2024 Chem. Phys. Lett. 849 141424

    [24]

    Meng X W, Shen L, 2020 Chem. Phys. Lett. 739 137029

    [25]

    Ebrahimi F, Maktabdaran G R, Sahimi M, 2020 J. Phys. Chem. B 124 8340

    [26]

    Zhang Q L, Wu Y X, Yang R Y, Zhang J L, Wang R F, 2021 Chem. Phys. Lett. 762 138139

    [27]

    Zhang Q L, Wang Y J, Yang H, Deng Y F, Wang T Q, Yang R Y, Zhu Z, 2025 Phys. Fluids 37 012031

    [28]

    Meng X W, Li Y, Shen L, Yang X Q, 2020 EPL 131 20003

    [29]

    Meng X W, Li Y, 2022 Physica E 135 114980

    [30]

    Wang F, Zhang X K, Li S, Su J Y, 2022 J. Mol. Liq. 362 119719

    [31]

    Wu Y, Wang Z, Li S, Su J Y, 2024 Phys. Fluids 36 022006

    [32]

    Hummer G, Rasaiah J C, Noworyta J P, 2001 Nature 414 188

    [33]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L, 1983 J. Chem. Phys. 79 926

    [34]

    Hess B, Kutzner C, Van De Spoel D, Lindahl E, 2008 J. Chem. Theory. Comp. 4 435

    [35]

    Nose S, 1984 J. Chem. Phys. 81 511

    [36]

    Hoover W G, 1985 Phys. Rev. A 31 1695

    [37]

    Wan R Z, Li J Y, Lu H J, Fang H P, 2005 J. Am. Chem. Soc. 127 7166

    [38]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P, 2007 P. Natl. Acad. Sci. USA 104 3687

    [39]

    Darden T A, York D M, Pedersen L G, 1993 J. Chem. Phys. 98 10089

    [40]

    Yang F B, Zhang Z R, Xu L J, Liu Z F, Jin P, Zhuang P F, Lei M, Liu J R, Jiang J H, Ouyang X P, Marchesoni F, Huang J P, 2024 Rev. Mod. Phys. 96 015002

  • [1] 李昭青, 韩益华, 王泽君, 白瑞良. 水分子跨细胞膜交换的磁共振测量技术研究进展. 物理学报, doi: 10.7498/aps.74.20250325
    [2] 马腾飞, 朱松林, 宋佳璐, 虞游, 田晓峰. 第一性原理研究单个水分子在PuO2(111)和(110)表面吸附行为. 物理学报, doi: 10.7498/aps.74.20250082
    [3] 邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓. 不凝性气体对纳米通道内水分子流动传热影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20240192
    [4] 武鹏, 李若晗, 张涛, 张进成, 郝跃. AlGaN/GaN肖特基二极管阳极后退火界面态修复技术. 物理学报, doi: 10.7498/aps.72.20230553
    [5] 杨志平, 孔熙, 石发展, 杜江峰. 金刚石表面纳米尺度水分子的相变观测. 物理学报, doi: 10.7498/aps.71.20211348
    [6] 杨韬, 钱仙妹, 马宏亮, 刘强, 朱文越, 郑健捷, 陈杰, 徐秋怡. 1.1 μm波段水分子的CO2加宽系数. 物理学报, doi: 10.7498/aps.71.20220700
    [7] 王路阔, 段芳莉. 金属原子催化作用下缺陷石墨烯薄膜的自修复过程. 物理学报, doi: 10.7498/aps.68.20190995
    [8] 王凯, 张文华, 刘凌云, 徐法强. VO2薄膜表面氧缺陷的修复:F4TCNQ分子吸附反应. 物理学报, doi: 10.7498/aps.65.088101
    [9] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, doi: 10.7498/aps.65.226801
    [10] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵. 物理学报, doi: 10.7498/aps.64.116101
    [11] 韩典荣, 朱兴凤, 戴亚飞, 程承平, 罗成林. 碳纳米管阵列水渗透性质的研究. 物理学报, doi: 10.7498/aps.64.230201
    [12] 汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟. 激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响. 物理学报, doi: 10.7498/aps.63.205204
    [13] 张首誉, 包尚联, 亢孝俭, 高嵩. 描述人体内水分子扩散各向异性特征的新方法. 物理学报, doi: 10.7498/aps.62.208703
    [14] 王志萍, 吴亚敏, 鲁超, 张秀梅, 何跃娟. 飞秒强激光场中水分子的电离激发. 物理学报, doi: 10.7498/aps.62.073301
    [15] 宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振. ZnO纳米线紫外探测器的制备和快速响应性能的研究. 物理学报, doi: 10.7498/aps.61.052901
    [16] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究. 物理学报, doi: 10.7498/aps.60.012101
    [17] 陈明, 闵锐, 周俊明, 胡浩, 林波, 缪灵, 江建军. 碳纳米胶囊中水分子的分子动力学研究. 物理学报, doi: 10.7498/aps.59.5148
    [18] 陈国栋, 王六定, 安博, 杨敏, 曹得财, 刘光清. 氮掺杂及水分子吸附碳纳米管电子场发射第一性原理研究. 物理学报, doi: 10.7498/aps.58.1190
    [19] 周艳红, 许 英, 郑小宏. 水分子对碳链的输运性质影响的第一性原理研究. 物理学报, doi: 10.7498/aps.56.1093
    [20] 刘 莹, 彭长德, 兰秀风, 骆晓森, 沈中华, 陆 建, 倪晓武. 乙醇和水分子形成配合物与荧光光谱特性研究. 物理学报, doi: 10.7498/aps.54.5455
计量
  • 文章访问数:  208
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-25

/

返回文章
返回