搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属原子催化作用下缺陷石墨烯薄膜的自修复过程

王路阔 段芳莉

引用本文:
Citation:

金属原子催化作用下缺陷石墨烯薄膜的自修复过程

王路阔, 段芳莉

Self-repairing process of defect graphene under metal atom catalysis

Wang Lu-Kuo, Duan Fang-Li
PDF
HTML
导出引用
  • 采用分子动力学方法, 模拟了金属原子存在条件下缺陷石墨烯的自修复过程. 模拟采用了Ni和Pt两种金属原子作为催化剂, 通过改变系统温度, 得到了多组模拟结果. 观察对比了模拟结束时获得的原子构型图, 并通过计算修复过程中石墨烯内5, 6, 7元环的数量变化, 研究了不同金属原子对缺陷石墨烯的催化修复效果, 发现在适当的温度(1600 K和2000 K)下, 与无金属原子条件下的修复结果相比, 两种金属原子都表现出了一定的催化修复能力, 且Ni表现出的催化修复能力要优于Pt. 为了探究其背后的机理, 我们模拟了部分典型的结构演变. 发现Ni和Pt原子分别会导致“环内跳出”和“断环”的局部结构转变, 并且在不同温度下均表现出不同程度捕获碳链的能力. 此外, 观察了两种金属原子在平面内外的不同迁移行为, 并通过绘制金属原子的迁移路线, 计算其迁移量, 进一步研究了两种金属原子不同的催化修复机理. 研究结果有利于认识不同金属原子具有的不同催化修复效果, 理解不同金属原子的催化作用机制, 有助于针对缺陷石墨烯的修复选择合适的催化剂.
    Single-atom catalysts play a crucial role in repairing defective graphene, but the existing research on the single-atom catalysts focuses on the reduction of energy barriers. The unique repairing behavior of the single-atom catalysts in the graphene-healing process and the different repair mechanisms between different catalyst atoms have not been studied in depth. In this paper, the molecular dynamics simulation is used to study the the self-repairing process of defective graphene in the presence of Ni and Pt atoms. By changing the system temperature, multiple sets of simulations are obtained. By observing the atomistic structure obtained at the end of the simulations, the different catalytic repair effects are studied. We calculate the variation of 5, 6 and 7-member rings of graphene in the repair process, it is found that at the appropriate temperatures (1600 K and 2000 K), Ni atom shows stronger catalytic repair capability than Pt atom, and as the temperature increases, the repair effect on defects is also improved. By comparing with the repair process without metal atoms, we find that the effect of metal atoms is significant especially in repairing the carbon chain. To figure out the reason, some typical structure evolutions are simulated. The simulations show that when Ni atom can capture carbon chains at 1600 K, Pt atom needs higher temperature at least 2000 K. Apart from that, Ni and Pt atoms respectively lead to local structural transformations of " jump from the ring” and " bond breakage”. This may be the reason why the 5, 6, and 7-membered rings in the final structure of Pt catalytic system are less than those of Ni catalytic system at 1600 K and 2000 K. In addition, we map the migration route of metal atoms and calculate the migration distance. By observing the different migration behaviors of the two metal atoms in and out of the plane, the different catalytic mechanisms are further studied. The research results in this paper conduce to understanding the catalytic mechanism of metal atoms in the repair of defective graphene. It is of theoretical significance for selecting the external conditions and catalysts for the repairing of defective graphene.
      通信作者: 段芳莉, flduan@cqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51775066)资助的课题
      Corresponding author: Duan Fang-Li, flduan@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51775066)
    [1]

    Oberlin A 1984 Carbon 22 521Google Scholar

    [2]

    Hishiyama Y, Inagaki M, Kimura S, Yamada S 1974 Carbon 12 249Google Scholar

    [3]

    Ljima S 1991 Nature 354 56Google Scholar

    [4]

    康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强 2012 物理学报 61 037302Google Scholar

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302Google Scholar

    [5]

    于海玲, 朱嘉琦, 曹文鑫, 韩杰才 2013 物理学报 62 028201Google Scholar

    Yu H L, Zhu J Q, Cao W X, Han J C 2013 Acta Phys. Sin. 62 028201Google Scholar

    [6]

    Ōya A, Ōtani S 1981 Carbon 19 391Google Scholar

    [7]

    Zan R, Ramasse Q M, Bangert U, Novoselov K S 2012 Nano Lett. 12 3936Google Scholar

    [8]

    Chan K T, Neaton J B, Cohen M L 2008 Phys. Rev. B 77 235430Google Scholar

    [9]

    Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykkö P, Nieminen R M 2009 Phys. Rev. Lett. 102 126807Google Scholar

    [10]

    Cretu O, Krasheninnikov A V, Rodriguez-Manzo J A, Sun L, Nieminen R M, Banhart F 2010 Phys. Rev. Lett. 105 196102Google Scholar

    [11]

    Gan Y, Sun L, Banhart F 2008 Small 4 587Google Scholar

    [12]

    Rodríguez-Manzo J A, Cretu O, Banhart F 2010 ACS Nano Lett. 4 3422Google Scholar

    [13]

    Jin C, Lan H, Suenaga K, Peng L, Iijima S 2008 Phys. Rev. Lett. 101 1761102

    [14]

    Charlier J C, Amara H, Lambin P 2007 ACS Nano Lett. 1 202Google Scholar

    [15]

    Lee Y H, Kim S G, Tomanek D 1997 Phys. Rev. Lett. 78 2393Google Scholar

    [16]

    Page A J, Ohta Y, Okamoto Y, Irle S, Morokuma K 2009 J. Phys. Chem. C 113 20198Google Scholar

    [17]

    Yuan Q, Xu Z, Yakobson B I, Ding F 2012 Phys. Rev. Lett. 108 245505Google Scholar

    [18]

    Li H, Zhang H, Yan X, Xu B, Guo J 2018 New Carbon Mater. 33 1Google Scholar

    [19]

    Jovanović Z, Pašti I, Kalijadis A, Jovanović S, Laušević Z 2013 Mater. Chem. Phys. 141 27Google Scholar

    [20]

    Karoui S, Amara H 2010 ACS Nano 4 6114Google Scholar

    [21]

    Meng L, Jiang J, Wang J, Ding F 2014 J. Phys. Chem. C 118 720Google Scholar

    [22]

    Mueller J E, van Duin A C T, Goddard III W A 2010 J. Phys. Chem. C 114 4939

    [23]

    Song B, Schneider G F, Xu Q, Pandraud G, Dekker C, Zandbergen H 2011 Nano Lett. 11 2247Google Scholar

    [24]

    Chen J, Shi T, Cai T, Xu T, Sun L, Wu X, Yu D 2013 Appl. Phys. Lett. 102 103107

    [25]

    Zhu J, Shi D 2013 Comput. Mater. Sci. 68 391Google Scholar

    [26]

    Patera L L, Bianchini F, Africh C, Dri C, Soldano G, Mariscal M M, Peressi M, Comelli G 2018 Science 359 1243Google Scholar

    [27]

    Botari T, Paupitz R, Alves da Silva Autreto, Galvao D S 2016 Carbon 99 302Google Scholar

    [28]

    Zakharchenko K V, Balatsky A V 2014 Carbon 80 12Google Scholar

    [29]

    Tsetseris L, Pantelides S T 2009 Carbon 47 901Google Scholar

    [30]

    Wang L, Duan F 2019 Fullerenes, Nanotubes and Carbon Nanostructures 27 247Google Scholar

  • 图 1  金属原子催化修复多空位缺陷石墨烯的示意图

    Fig. 1.  Schematic representation of catalytic repair of the multi-vacancy defective graphene.

    图 2  (a) 缺陷石墨烯添加8个C原子后的原子构型图; (b) ReaxFF和DFT计算添加C原子的形成能曲线

    Fig. 2.  (a) Atomistic configuration of the addition of 8 C atoms to the defective graphene; (b) the formation energies during the addition of 8 C atoms calculated by ReaxFF and DFT.

    图 3  不同温度下Ni和Pt催化修复后的缺陷石墨烯典型最终结构 (a) 1000 K; (b) 1600 K; (c) 2000 K; (d) 2500 K

    Fig. 3.  Typical final configurations of defective graphene after catalytic repair by Ni and Pt at different temperatures of (a) 1000 K, (b) 1600 K, (c) 2000 K and (d) 2500 K.

    图 4  温度和催化剂类型对石墨烯空洞处5—7元环数量的影响 (a) 5元环; (b) 6元环; (c) 7元环

    Fig. 4.  Effect of temperature and catalyst types on the number of (a) 5-membered rings, (b) 6-membered rings and (c) 7-membered rings at the region of graphene hole.

    图 5  不同温度时无催化原子条件下缺陷石墨烯最终修复结构 (a) 1600 K; (b) 2000 K

    Fig. 5.  Final repair structure of defective graphene without catalytic atoms at different temperatures of (a) 1600 K and (b) 2000 K.

    图 6  碳链在催化原子作用下的演变 (a) Ni原子; (b) Pt原子

    Fig. 6.  Evolution of carbon chains with catalytic atoms of (a) Ni atom and (b) Pt atom.

    图 7  (a) Ni原子的“环内跳出”行为; (b) Pt原子的“断环”行为

    Fig. 7.  (a) “Jump out from rings” behavior of Ni atom; (b) “break off rings”behavior of Pt atom.

    图 8  催化原子位于石墨烯面内时的典型迁移方式 (a) Ni原子主动迁移; (b) Pt原子被动迁移

    Fig. 8.  Typical migration patterns of catalytic atoms within the graphene plane: (a) Active migration of Ni atom; (b) passive migration of Pt atom.

    图 9  催化原子位于石墨烯面上时的典型迁移方式 (a) Ni原子; (b) Pt原子

    Fig. 9.  Typical migration patterns of (a) Ni atom and (b) Pt atom above the graphene surface.

    图 10  C-Ni/Pt-C三元环位于石墨烯面上时的典型迁移方式 (a) C-Ni-C三元环; (b) C-Pt-C三元环

    Fig. 10.  Typical migration patterns of (a) C-Ni-C and (b) C-Pt-C configurations above the graphene surface.

    图 11  在修复过程中催化原子的运动轨迹 (a) Ni原子; (b) Pt原子

    Fig. 11.  The motion trajectories of (a) Ni atoms and (b) Pt atoms during the repair process.

    图 12  (a) 催化剂种类和温度对单次位移量概率分布的影响; (b) 催化剂种类和温度对总位移量的影响

    Fig. 12.  (a) Effect of catalyst type and temperature on the probability distribution of single displacements; (b) effect of catalyst type and temperature on total displacement.

    表 1  不同修复条件下最终结构中典型缺陷结构的统计数据

    Table 1.  The statistics of the typical structures appeared on the final configurationsunder different repair conditions.

    温度/K
    1000160020002500
    催化剂类型Ni碳链 (5)空缺 (1)空缺 (0)空缺 (0)
    碳链 (1)
    Pt碳链 (5)空缺 (4)空缺 (4)空缺 (1)
    碳链 (4)
    下载: 导出CSV

    表 2  不同条件下两种局部结构转变出现次数

    Table 2.  Number of occurrences of two local structural evolutions under different conditions.

    环内跳出断环
    Ni1600 K20
    2000 K40
    Pt1600 K03
    2000 K05
    下载: 导出CSV
  • [1]

    Oberlin A 1984 Carbon 22 521Google Scholar

    [2]

    Hishiyama Y, Inagaki M, Kimura S, Yamada S 1974 Carbon 12 249Google Scholar

    [3]

    Ljima S 1991 Nature 354 56Google Scholar

    [4]

    康朝阳, 唐军, 李利民, 闫文盛, 徐彭寿, 韦世强 2012 物理学报 61 037302Google Scholar

    Kang C Y, Tang J, Li L M, Yan W S, Xu P S, Wei S Q 2012 Acta Phys. Sin. 61 037302Google Scholar

    [5]

    于海玲, 朱嘉琦, 曹文鑫, 韩杰才 2013 物理学报 62 028201Google Scholar

    Yu H L, Zhu J Q, Cao W X, Han J C 2013 Acta Phys. Sin. 62 028201Google Scholar

    [6]

    Ōya A, Ōtani S 1981 Carbon 19 391Google Scholar

    [7]

    Zan R, Ramasse Q M, Bangert U, Novoselov K S 2012 Nano Lett. 12 3936Google Scholar

    [8]

    Chan K T, Neaton J B, Cohen M L 2008 Phys. Rev. B 77 235430Google Scholar

    [9]

    Krasheninnikov A V, Lehtinen P O, Foster A S, Pyykkö P, Nieminen R M 2009 Phys. Rev. Lett. 102 126807Google Scholar

    [10]

    Cretu O, Krasheninnikov A V, Rodriguez-Manzo J A, Sun L, Nieminen R M, Banhart F 2010 Phys. Rev. Lett. 105 196102Google Scholar

    [11]

    Gan Y, Sun L, Banhart F 2008 Small 4 587Google Scholar

    [12]

    Rodríguez-Manzo J A, Cretu O, Banhart F 2010 ACS Nano Lett. 4 3422Google Scholar

    [13]

    Jin C, Lan H, Suenaga K, Peng L, Iijima S 2008 Phys. Rev. Lett. 101 1761102

    [14]

    Charlier J C, Amara H, Lambin P 2007 ACS Nano Lett. 1 202Google Scholar

    [15]

    Lee Y H, Kim S G, Tomanek D 1997 Phys. Rev. Lett. 78 2393Google Scholar

    [16]

    Page A J, Ohta Y, Okamoto Y, Irle S, Morokuma K 2009 J. Phys. Chem. C 113 20198Google Scholar

    [17]

    Yuan Q, Xu Z, Yakobson B I, Ding F 2012 Phys. Rev. Lett. 108 245505Google Scholar

    [18]

    Li H, Zhang H, Yan X, Xu B, Guo J 2018 New Carbon Mater. 33 1Google Scholar

    [19]

    Jovanović Z, Pašti I, Kalijadis A, Jovanović S, Laušević Z 2013 Mater. Chem. Phys. 141 27Google Scholar

    [20]

    Karoui S, Amara H 2010 ACS Nano 4 6114Google Scholar

    [21]

    Meng L, Jiang J, Wang J, Ding F 2014 J. Phys. Chem. C 118 720Google Scholar

    [22]

    Mueller J E, van Duin A C T, Goddard III W A 2010 J. Phys. Chem. C 114 4939

    [23]

    Song B, Schneider G F, Xu Q, Pandraud G, Dekker C, Zandbergen H 2011 Nano Lett. 11 2247Google Scholar

    [24]

    Chen J, Shi T, Cai T, Xu T, Sun L, Wu X, Yu D 2013 Appl. Phys. Lett. 102 103107

    [25]

    Zhu J, Shi D 2013 Comput. Mater. Sci. 68 391Google Scholar

    [26]

    Patera L L, Bianchini F, Africh C, Dri C, Soldano G, Mariscal M M, Peressi M, Comelli G 2018 Science 359 1243Google Scholar

    [27]

    Botari T, Paupitz R, Alves da Silva Autreto, Galvao D S 2016 Carbon 99 302Google Scholar

    [28]

    Zakharchenko K V, Balatsky A V 2014 Carbon 80 12Google Scholar

    [29]

    Tsetseris L, Pantelides S T 2009 Carbon 47 901Google Scholar

    [30]

    Wang L, Duan F 2019 Fullerenes, Nanotubes and Carbon Nanostructures 27 247Google Scholar

  • [1] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [2] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [3] 李圣凯, 郝卿, 彭天欢, 陈卓, 谭蔚泓. 核酸-金属复合物及其在原子制造领域的应用. 物理学报, 2021, 70(2): 028102. doi: 10.7498/aps.70.20201430
    [4] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究. 物理学报, 2020, 69(13): 136102. doi: 10.7498/aps.69.20191903
    [5] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [6] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [7] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [8] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [9] 李艳茹, 何秋香, 王芳, 向浪, 钟建新, 孟利军. 金属纳米薄膜在石墨基底表面的动力学演化. 物理学报, 2016, 65(3): 036804. doi: 10.7498/aps.65.036804
    [10] 覃业宏, 唐超, 张春小, 孟利军, 钟建新. 硅晶体表面石墨烯褶皱形貌的分子动力学模拟研究. 物理学报, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [11] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响. 物理学报, 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [12] 颜超, 段军红, 何兴道. Ni原子倾斜轰击Pt(111)表面低能溅射现象的分子动力学模拟. 物理学报, 2011, 60(8): 088301. doi: 10.7498/aps.60.088301
    [13] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟. 物理学报, 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [14] 汪俊, 张宝玲, 周宇璐, 侯氢. 金属钨中氦行为的分子动力学模拟. 物理学报, 2011, 60(10): 106601. doi: 10.7498/aps.60.106601
    [15] 颜超, 段军红, 何兴道. 低能原子沉积在Pt(111)表面的分子动力学模拟. 物理学报, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [16] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟. 物理学报, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [17] 谢 朝, 侯 氢, 汪 俊, 孙铁英, 龙兴贵, 罗顺忠. 金属钛中氦团簇融合的分子动力学模拟. 物理学报, 2008, 57(8): 5159-5164. doi: 10.7498/aps.57.5159
    [18] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, 2007, 56(3): 1494-1498. doi: 10.7498/aps.56.1494
    [19] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [20] 叶子燕, 张庆瑜. 低能Pt原子团簇沉积过程的分子动力学模拟. 物理学报, 2002, 51(12): 2798-2803. doi: 10.7498/aps.51.2798
计量
  • 文章访问数:  9449
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 修回日期:  2019-07-24
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回