搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核酸-金属复合物及其在原子制造领域的应用

李圣凯 郝卿 彭天欢 陈卓 谭蔚泓

引用本文:
Citation:

核酸-金属复合物及其在原子制造领域的应用

李圣凯, 郝卿, 彭天欢, 陈卓, 谭蔚泓

Nucleic acid-metal complex and its application in atomic-scale manufacturing

Li Sheng-Kai, Hao Qing, Peng Tian-Huan, Chen Zhuo, Tan Wei-Hong
PDF
HTML
导出引用
  • 原子及近原子尺度制造是直接以原子为操纵对象, 构建具有特定功能的原子尺度结构, 并实现批量生产以满足所需要的前沿制造技术, 是国际学术研究的前沿热点问题. 本综述总结了核酸材料在精准原子制造中的应用及前景, 从核酸材料的基本结构与功能出发, 论述了DNA与金属原子相互作用的基本原理. 从天然核酸材料、人工碱基“分子元素”、核酸纳米结构等方面分类介绍了核酸材料介导的精准原子制造的发展历程与突破性进展. 最后, 对该领域存在的一些挑战与机遇进行了系统性总结, 并对其未来发展方向进行了展望.
    Atomic-scale and close-to-atomic scale manufacturing, a frontier hot issue in international academic research, is a cutting-edge manufacturing technique in which atoms are directly used as the manipulation object and atomic-scale structures with specific functions are established to meet the requirements for mass productions. This review focuses on precise atomic-scale manufacturing technology of nucleic acid materials. Firstly, the basic structures and functions of nucleic acid materials are introduced, and the basic principles of the interaction between DNA and metal atoms are discussed. Then the development process and breakthrough progress of nucleic acid materials-mediated precise atomic-scale manufacturing are introduced from the aspects of natural nucleic acid materials, artificial base “molecular elements”, and nucleic acid nanostructures. Finally, the challenges and opportunities in this field are systematically summarized and some suggestions for future development are given.
      通信作者: 彭天欢, pengtianhuan@hnu.edu.cn ; 陈卓, zhuochen@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21522501)和湖南省自然科学基金(批准号: 2018JJ1007)资助的课题
      Corresponding author: Peng Tian-Huan, pengtianhuan@hnu.edu.cn ; Chen Zhuo, zhuochen@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21522501) and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ1007)
    [1]

    房丰洲 2020 中国机械工程 31 1009Google Scholar

    Fang F 2020 Chinese Mech. Eng. 31 1009Google Scholar

    [2]

    李沫, 李倩, 张健 2016 太赫兹科学与电子信息学报 14 793Google Scholar

    Li M, Li Q, Zhang J 2016 J. Terahertz Sci. Electron. Inf. Technol. 14 793Google Scholar

    [3]

    Jiang D, England C G, Cai W 2016 J. Control. Release 239 27Google Scholar

    [4]

    Dai Z, Leung H M, Lo P K 2017 Small 13 1602881Google Scholar

    [5]

    Lippert B 2000 Coord. Chem. Rev. 200 487Google Scholar

    [6]

    Morris D L 2014 Biomol. Concepts 5 397Google Scholar

    [7]

    Liu J, Lu Y 2004 J. Am. Chem. Soc. 126 12298Google Scholar

    [8]

    Cai W, Xie S, Zhang J, Tang D, Tang Y 2018 Biosens. Bioelectron. 117 3128Google Scholar

    [9]

    Jia X, Li J, Han L, Ren J, Yang X, Wang E 2012 ACS Nano 6 3311Google Scholar

    [10]

    Chen A, Ma S, Zhuo Y, Chai Y, Yuan R 2016 Anal. Chem. 88 3203Google Scholar

    [11]

    Fu J, Zhang Z, Li G 2019 Chinese Chem. Let. 30 285Google Scholar

    [12]

    Wagenknecht H A 2003 Angew. Chem. Int. Ed. 42 3204Google Scholar

    [13]

    Wheate N J, Walker S, Craig G E, Oun R 2010 Dalton Trans. 39 8113Google Scholar

    [14]

    Erxleben A 2017 CHIMIA 71 102Google Scholar

    [15]

    Belmont P, Constan, J F, Demeunynck M 2001 Chem. Soc. Rev. 30 70Google Scholar

    [16]

    Shamsi M H, Kraatz H B 2013 J. Inorg. Organomet. Polym. Mater. 23 4Google Scholar

    [17]

    Sigel H 1993 Chem. Soc. Rev. 22 255Google Scholar

    [18]

    Pages B J, Ang D L, Wright E P, Aldrich-Wright J R 2015 Dalton Trans. 44 3505Google Scholar

    [19]

    Müller J 2010 Metallomics 2 318Google Scholar

    [20]

    Kellett A, Molphy Z, Slator C, McKee V, Farrell N P 2019 Chem. Soc. Rev. 48 971Google Scholar

    [21]

    Ono A, Togashi H 2004 Angew. Chem. 116 4400Google Scholar

    [22]

    Jiang X, Wang H, Wang H, Yuan R, Chai Y 2016 Anal. Chem. 88 9243Google Scholar

    [23]

    Zhang B, Guo L H 2012 Biosens. Bioelectron. 37 112Google Scholar

    [24]

    Huang J, Gao X, Jia J, Kim J K, Li Z 2014 Anal. Chem. 86 3209Google Scholar

    [25]

    Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamato I, Tanaka Y 2008 Chem. Commun. 39 4825Google Scholar

    [26]

    Zhao C, Qu K, Song Y, Xu C, Ren J, Qu X 2010 Chem. Eur. J. 16 8147Google Scholar

    [27]

    Zheng Y, Yang C, Yang F, Yang X 2014 Anal. Chem. 86 3849Google Scholar

    [28]

    Park S, Sugiyama H 2010 Angew. Chem. Int. Ed. 49 3870Google Scholar

    [29]

    Wang C, Li Y, Jia G, Liu Y, Lu S, Li C 2012 Chem. Commun. 48 6232Google Scholar

    [30]

    Cepeda V, Fuertes M A, Castilla J, Alonso C, Quevedo C, Perez J M 2007 Anti-Cancer. Agents Med. Chem. 7 3Google Scholar

    [31]

    Wang D, Lippard S J 2005 Nat. Rev. Drug Discovery 4 307Google Scholar

    [32]

    Hartinger C G, Zorbas-Seifried S, Jakupec M A, Kynast B, Zorbas H, Keppler B K 2006 J. Inorg. Biochem. 100 891Google Scholar

    [33]

    Komor A C, Barton J K 2013 Chem. Commun. 49 3617Google Scholar

    [34]

    Wu T, Liu J, Liu M, Liu S, Zhao S. Tian R, Wei D, Liu Y, Zhao Y, Xiao H, Ding B 2019 Angew. Chem. In. Ed. 58 14224Google Scholar

    [35]

    Chen Y. Xu J, Su J, Xiang Y, Yuan R, Chai Y 2012 Anal. Chem. 84 7750Google Scholar

    [36]

    Wang H, Yuan Y, Zhuo Y, Chai Y, Yuan R 2016 Anal. Chem. 88 5797Google Scholar

    [37]

    Li S K, Chen A Y, Chai Y Q, Yuan R, Zhuo Y 2016 Electrochim. Acta 212 767Google Scholar

    [38]

    Kosman J, Juskowiak B 2011 Anal. Chim. Acta 707 7Google Scholar

    [39]

    Yang X, Li T, Li B, Wang E 2010 Analyst 135 71Google Scholar

    [40]

    Huang R, He L, Xia Y, Xu H, Liu C, Xie H, Wang S, Peng Li, Liu Y, Liu Y, He N, Li Z 2019 Small 15 1900735Google Scholar

    [41]

    Golub E, Freeman R, Willner I 2011 Angew. Chem. 123 11914Google Scholar

    [42]

    Chen Y, Phipps M L, Werner J H, Chakraborty S, Martinez J S 2018 Accounts Chem. Res. 51 2756Google Scholar

    [43]

    Petty J T, Zheng J, Hud N V, Dickson R M 2004 J. Am. Chem. Soc. 126 5207Google Scholar

    [44]

    Sharma J, Yeh H C, Yoo H, Werner J H, Martinez J S 2010 Chem. Commun. 46 3280Google Scholar

    [45]

    Lan G Y, Chen W Y, Chang H T 2011 RSC Adv. 1 802Google Scholar

    [46]

    Gwinn E G, O'Neill P, Guerrero A J, Bouwmeester D, Fygenson D K 2008 Adv. Mater. 20 279Google Scholar

    [47]

    Feng L, Huang Z, Ren J, Qu X 2012 Nucleic Acids Res. 40 e122Google Scholar

    [48]

    Liu Y Q, Zhang M, Yin B C, Ye B C 2012 Anal. Chem. 84 5165Google Scholar

    [49]

    Liu J J, Song X R, Wang Y W, Zheng A X, Chen G N, Yang H H 2012 Anal. Chim. Acta 749 70Google Scholar

    [50]

    Lyu D, Li J, Wang X, Guo W, Wang E 2018 Anal. Chem. 91 2050Google Scholar

    [51]

    Thomas A C 2012 Chem. Commun. 48 6845Google Scholar

    [52]

    Qing Z, He X, He D, Wang K, Xu F, Qing T, Yang X 2013 Angew. Chem. In. Ed. 52 9719Google Scholar

    [53]

    Zhou F, Cui X, Shang A, Lian J, Yang L, Jin Y, Li B 2017 Microchim. Acta 184 773Google Scholar

    [54]

    Ai J, Guo W, Li B, Li T, Li D, Wang E 2012 Talanta 88 450Google Scholar

    [55]

    Fu Y, Zhao X, Zhang J, Li W 2014 J. Phys. Chem. C 118 18116Google Scholar

    [56]

    Li W, Li W, Hu Y, Xia Y, Shen Q, Nie Z, Huang Y, Yao S 2013 Biosen. Bioelectron. 47 345Google Scholar

    [57]

    Wu L L, Wang L Y, Xie Z J, Pan N, Peng C F 2016 Sens. Actuators, B 235 110Google Scholar

    [58]

    Navani N K, Li Y 2006 Curr. Opin. Chem. Biol. 10 272Google Scholar

    [59]

    Stoltenburg R, Reinemann C, Strehlitz B 2007 Biomol. Eng. 24 381Google Scholar

    [60]

    Zhan S, Wu Y, Wang L, Zhan X, Zhou P 2016 Biosens Bioelectron. 86 353Google Scholar

    [61]

    Dass C R, Choong P F, Khachigian L M 2008 Mol. Cancer Ther. 7 243Google Scholar

    [62]

    McGhee C E, Loh K Y, Lu Y 2017 Curr. Opin. Biotechnol. 45 191Google Scholar

    [63]

    Fan H, Zhang X, Lu Y 2017 Sci. China Chem. 60 591Google Scholar

    [64]

    Li L, Xu S, Yan H, Li X, Yazd H S, Li X, Huang T, Cui C, Jiang J, Tan W 2020 Angew. Chem. Int. Ed. 59 2Google Scholar

    [65]

    Pang X, Cui C, Wan S., Jiang Y, Zhang L, Xia L, Li L, Li X, Tan W 2018 Cancers 10 47Google Scholar

    [66]

    Meng H M, Liu H, Kuai H, Peng R, Mo L, Zhang X B 2016 Chem. Soc. Rev. 45 2583Google Scholar

    [67]

    Li S, Xu J, Wang S, Xia X, Chen L, Chen Z 2019 Chinese Chem. Lett. 30 1581Google Scholar

    [68]

    Zhang D, Yin L, Meng Z, Yu A, Guo L, Wang H 2014 Anal. Chim. Acta 812 161Google Scholar

    [69]

    Lei Y M, Huang W X, Zhao M, Chai Y Q, Yuan R, Zhuo Y 2015 Anal. Chem. 87 7787

    [70]

    陈俊俊, 李称, 徐斐, 曹慧, 叶泰, 于劲松, 袁敏 2018 工业微生物 3 11Google Scholar

    Chen J J, Li C, Xu F, Cao H, Ye T, Y u, J S, Yuan M 2018 Industrial Microorganisms 3 11Google Scholar

    [71]

    Williamson J R 1994 Annu. Rev. Bioph. Biom. 23 703Google Scholar

    [72]

    Chung C H, Kim J H, Jung J, Chung B H 2013 Biosen. Bioelectron. 41 827Google Scholar

    [73]

    Peng Y, Li Y, Li L, Zhu J J 2018 J. Hazard. Mater. 359 121Google Scholar

    [74]

    Breaker R R, Joyce G F 1994 Chem. Biol. 1 223Google Scholar

    [75]

    Ihms H E, Lu Y 2012 Humana Press 848 297Google Scholar

    [76]

    Liang W B, Zhuo Y, Zheng Y N, Xiong C Y, Chai Y Q, Yuan R 2017 ACS Appl. Mater. Interfaces 9 39812Google Scholar

    [77]

    Hong C, Kim D M, Baek A, Chung H, Jung W, Kim D E 2015 Chem. Commun. 51 5641Google Scholar

    [78]

    Chen J, Zuehlke A, Deng B, Peng H, Hou X, Zhang H 2017 Anal. Chem. 89 12888Google Scholar

    [79]

    Fan H, Zhao Z, Yan G, Zhang X, Yang C, Meng H, Chen Z, Liu H, Tan W 2015 Angew. Chem. 127 4883Google Scholar

    [80]

    Wang H, Wang H, Wu Q, Liang M, Liu X, Wang F 2019 Chem. Sci. 10 9597Google Scholar

    [81]

    Khakshoor O, Kool E T 2011 Chem. Commun. 47 7018Google Scholar

    [82]

    Pinheiro V B, Holliger P 2012 Curr. Opin. Chem. Biol. 16 245Google Scholar

    [83]

    Nielsen P E, Haaima G 1997 Chem. Soc. Rev. 26 73Google Scholar

    [84]

    Corradini R, Sforza S, Tedeschi T, Totsingan F, Manicardi A, Marchelli R 2011 Curr. Top. Med. Chem. 11 1535Google Scholar

    [85]

    Whittell G R, Manners I 2007 Adv. Mater. 19 3439Google Scholar

    [86]

    James H R 2012 Chem. Commun. 48 12165Google Scholar

    [87]

    Clever G H, Shionoya M 2010 Coord. Chem. Rev. 254 2391Google Scholar

    [88]

    Johannsen S, Megger N, Böhme D, Sige R K, Mn F, Manicard Nat. Chem. 2 229

    [89]

    Zhu T, Wu Q, Chen P, Ding Y 2009 J. Organomet. Chem. 694 21Google Scholar

    [90]

    Li D, Song S, Fan C 2010 Accounts Chem. Res. 43 631Google Scholar

    [91]

    Abdullah R, Xie S, Wang R, Jin C, Du Y, Fu T, Li J, Zhang L, Tan W 2018 Anal. Chem. 91 2074Google Scholar

    [92]

    Wang R, Zhu G, Mei L, Xie Y, Ma H, Ye M, Qing F L, Tan W 2014 J. Am. Chem. Soc. 136 2731Google Scholar

    [93]

    Jin C, Liu X, Bai H, Wang R, Tan J, Peng X, Tan W 2017 ACS Nano 11 12087Google Scholar

    [94]

    Jin C, He J, Zou J, Xuan W, Fu T, Wang R, Tan W 2019 Nat. Commun. 10 2704Google Scholar

    [95]

    Xie S, Qiu L, Cui L, Liu H, Sun Y, Liang H, Ding D, He L, Liu H, Zhang J, Chen, Z. Zhang X, Tan W 2017 Chem 3 1021Google Scholar

    [96]

    Tan J, Li H, Hu X, Abdullah R, Xie S, Zhang L, Zhao M, Luo Q, Li Y, Sun Z, Yuan Q, Tan W 2019 Chem 5 1775Google Scholar

    [97]

    Zhang L, Abdullah R, H X, Bai H, Fan H, He L, Liang H, Zou J, Liu Y, Zhang, X. Tan W 2019 J. Am. Chem. Soc. 141 4282Google Scholar

    [98]

    Kallenbach N R, Ma R I, Seeman N C 1983 Nature 305 829Google Scholar

    [99]

    Seeman N C 2003 Nature 421 427Google Scholar

    [100]

    Aldaye F A, Palmer A L, Sleiman H F 2008 Science 321 1795Google Scholar

    [101]

    Seeman N C 2010 Annu. Rev. Biochem. 79 6Google Scholar

    [102]

    Wang Z G, Ding B 2014 Accounts Chem. Res. 47 1654Google Scholar

    [103]

    Veneziano R, Moyer T J, Stone M B, Wamhoff E C, Read B J, Mukherjee S, Shepherd T R, Das J, Schief W R, Irvine D J, Bathe M 2020 Nat. Nanotechnol. 15 716Google Scholar

    [104]

    He X, Dong L, Wang W, Lin N, Mi Y 2013 Chem. Commun. 49 2906Google Scholar

    [105]

    Liu Y, Chen Q, Liu J, Yang X, Guo Q, Li L, Liu W, Wang K 2017 Anal. Chem. 89 3590Google Scholar

    [106]

    Ke Y, Sharma J, Liu M, Jahn K, Liu Y, Yan H 2009 Nano Lett. 9 2445Google Scholar

    [107]

    Sadowski J P, Calvert C R, Zhang D Y, Pierce N A, Yin P 2014 ACS Nano 8 3251Google Scholar

    [108]

    Mou Q, Ma Y, Pan G, Xue B, Yan D, Zhang C, Zhu X 2017 Angew. Chem. 129 12702Google Scholar

    [109]

    Shiu S C C, Fraser L A, Ding Y, Tanner J A 2018 Molecules 23 1695Google Scholar

    [110]

    Um S H, Lee J B, Park N, Kwon, S Y, Umbach C C, Luo D 2006 Nat. Mater. 5 797Google Scholar

    [111]

    Shahbazi M A, Baulethk N, Kwon, S Y, Umbach C C Adv. Therap. 1 1800042

    [112]

    He Y, Tian Y, Chen Y, Deng Z, Ribbe A E, Mao C 2005 Angew. Chem. Int. Ed. 44 6694Google Scholar

    [113]

    He Y, Chen Y, Liu H, Ribbe A E, Mao C 2005 J. Am. Chem. Soc. 127 12202Google Scholar

    [114]

    Douglas S M, Marblestone A H, Teerapittayanon S, Vazquez A, Church G M, Shih W M 2009 Nucleic Acids Res. 37 5001Google Scholar

    [115]

    Bila H, Kurisinkal E E, Bastings M M 2019 Biomater. Sci. 7 532Google Scholar

    [116]

    Rothemund P W K 2006 Nature 440 297Google Scholar

    [117]

    Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W, Bathe M 2016 Science 352 1534Google Scholar

    [118]

    Schreiber R, Do J, Roller E M, Zhang T, Sch, ler, V J, Nickels P C, Feldmann J, Liedl T 2014 Nat. Nanotechnol. 9 74Google Scholar

    [119]

    Zhan P, Wen T, Wang Z G, He Y, Shi J, Wang T. Liu X, Lu G, Ding B 2018 Angew. Chem. Int. Ed. 57 2846Google Scholar

    [120]

    Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R N, Bokor J 2010 J. Am. Chem. Soc. 132 3248Google Scholar

    [121]

    Tian Y, Wang T, Liu W, Xin H L, Li H, Ke Y, M. Shih W, Gang O 2015 Nat. Nanotechnol. 10 637Google Scholar

    [122]

    Jia S, Wang J, Xie M, Sun J, Liu H, Zhang Y, Chao J, Li J, Wang L, Lin J, Gothelf K V, Fan C 2019 Nat. Commun. 10 5597Google Scholar

    [123]

    Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C 2018 Nature 559 593Google Scholar

    [124]

    Schreiber R, Luong N, Fan, Z, Kuzyk A, Nickels P C, Zhang T, Smith D M, Yurke B, Kuang W, Govorov A O, Liedl T 2013 Nat. Commun. 4 1Google Scholar

    [125]

    Urban M J, Dutta P K, Wang P, Duan, X, Shen X, Ding B, Ke Y, Liu N 2016 J. Am. Chem. Soc. 138 5495Google Scholar

    [126]

    Wang P, Meyer T A, Pan V, Dutta P K, Ke Y 2017 Chem 2 359Google Scholar

    [127]

    Loretan M, Domljanovic I, Lakatos M, Re Y 2017 Ding B, Ke Y Materials 13 2185Google Scholar

    [128]

    Fu J, Liu M, Liu Y, Woodbury N W, Yan H 2012 J. Am. Chem. Soc. 134 5516Google Scholar

    [129]

    Liu N, Dai M, Saka S K, Yin P 2019 Nat. Chem. 11 1001Google Scholar

    [130]

    Braun E, Eichen Y, Sivan U, Ben-Yoseph G 1998 Nature 391 775Google Scholar

    [131]

    Liu J, Geng Y, Pound E, Gyawali S, Ashton J R, Hickey J, Woolley A T, Harb J N 2011 ACS Nano 5 2240Google Scholar

    [132]

    Geng Y, Liu J, Pound E, Gyawali S, Harb J N, Woolley A T 2011 J. Mater. Chem. 21 12126Google Scholar

    [133]

    Geng Y, Pearson A C, Gates E P, Uprety B, Davis R C, Harb J N, Woolley A T 2013 Langmuir 29 3482Google Scholar

    [134]

    Pilo-Pais M, Goldberg S, Samano E, LaBean T H, Finkelstein G 2011 Nano Lett. 11 3489Google Scholar

    [135]

    Helmi S, Ziegler C, Kauert D J, Seidel R 2014 Nano Lett. 14 6693Google Scholar

    [136]

    Sun W, Boulais E, Hakobyan Y, Wang W L, Guan A, Bathe M, Yin P 2014 Science 346 6210Google Scholar

  • 图 1  (a) 5种天然核酸碱基单体结构; (b) B-DNA双螺旋结构模型; (c) 通过氢键相连的DNA碱基互补配对形式

    Fig. 1.  (a) Structure of five natural nucleic acid bases; (b) structure model of B-DNA; (c) DNA base pairing through hydrogen bonds.

    图 2  金属离子与DNA之间的两种作用方式

    Fig. 2.  Two modes of interaction between metal ions and DNA.

    图 3  (a) T-Hg2+-T和C-Ag+-C结构示意图; (b) 顺铂与DNA相互作用形成的1, 2-链内加合物[18]; (c) 用于铂药物靶向递送的纳米抗体偶联DNA纳米平台示意图[34]

    Fig. 3.  (a) Illustration of T-Hg2+-T and C-Ag+-C complexes induced fluorescence quenching; (b) 1, 2-intrastrand adducts formed between cisplatin and DNA[18]; (c) illustration of a nanobody-conjugated DNA nanoplatform for targeted platinum drug delivery[34].

    图 4  制备不同DNA@Ag-NCs-阳离子聚电解质复合物用于细胞成像以及NIH/3T3细胞的共聚焦激光扫描显微镜成像图[50]

    Fig. 4.  Preparation of different fluorescent DNA-AgNCs-cationic polyelectrolyte complexes for cell imaging and confocal laser scanning microscopy images of NIH/3T3 cells[50].

    图 5  (a) 由中心阳离子稳定的4个G碱基和人端粒G-四链体DNA的X射线结构[18]; (b) 金属离子依赖性DNAzyme的结构示意图[62]

    Fig. 5.  (a) Illustration of four guanine bases stabilized by a central cation and X-ray structure of human telomeric G-quadruplex DNA[18]; (b) illustration of metal ions dependent DNAzyme[62].

    图 6  (a) (Fc-TT)8序列的合成步骤[86]; (b) Fc人工碱基单体的合成步骤[91]

    Fig. 6.  (a) Synthesis procedure of (Fc-TT)8[86]; (b) synthesis procedure of Fc artificial base monomer[91].

    图 7  (a) 适体-Fen两亲分子的示意图以及在不同条件下的ApFAs的TEM图像[96]; (b) DOX/Sgc8-NFs-Fc的制备及其通过类芬顿反应在癌细胞中的自降解过程[97]

    Fig. 7.  (a) Schematic of aptamer-Fen amphiphilic molecules and TEM images of ApFAs at different conditions[96]; (b) preparation of DOX/Sgc8-NFs-Fc and its autodegradation process in cancer cells through Fenton-like reaction[97].

    图 8  (a) 二维DNA折纸[116]; (b) 三维多面体DNA折纸[117]

    Fig. 8.  (a) 2D DNA origami[116]; (b) 3D polyhedral DNA origami[117].

    图 9  (a) 利用三角折纸对不同大小AuNPs进行空间排布[120]; (b) DNA折纸介导的GOx和HRP的距离可控共组装[128]

    Fig. 9.  (a) 2D arrangement of Au NPs using triangle DNA origami[120]; (b) DNA nanostructure-directed coassembly of GOx and HRP enzymes with control over interenzyme distances[128].

    图 10  (a) 基于DNA折纸的金领结纳米结构用于单分子表面增强拉曼散射分析[119]; (b) 用“Action-PAINT”实现单分策略的多点超分辨图案[129]

    Fig. 10.  (a) Gold bowtie nanostructures based on DNA origami for single-molecule surface-enhanced Raman scattering analysis[119]; (b) multipoint super-resolution patterning using “Action-PAINT” strategy[129].

    图 11  (a) 使用DNA缩合和固有的金属化图案模拟纳米印刷电路板[122]; (b)利用不同DNA折纸为模板生长SiO2[123]

    Fig. 11.  (a) Fabricating nano-printed circuit boards mimics with DNA condensation and intrinsic metallization patterning[122]; (b) growth of SiO2 with different morphology by various DNA origami[123].

  • [1]

    房丰洲 2020 中国机械工程 31 1009Google Scholar

    Fang F 2020 Chinese Mech. Eng. 31 1009Google Scholar

    [2]

    李沫, 李倩, 张健 2016 太赫兹科学与电子信息学报 14 793Google Scholar

    Li M, Li Q, Zhang J 2016 J. Terahertz Sci. Electron. Inf. Technol. 14 793Google Scholar

    [3]

    Jiang D, England C G, Cai W 2016 J. Control. Release 239 27Google Scholar

    [4]

    Dai Z, Leung H M, Lo P K 2017 Small 13 1602881Google Scholar

    [5]

    Lippert B 2000 Coord. Chem. Rev. 200 487Google Scholar

    [6]

    Morris D L 2014 Biomol. Concepts 5 397Google Scholar

    [7]

    Liu J, Lu Y 2004 J. Am. Chem. Soc. 126 12298Google Scholar

    [8]

    Cai W, Xie S, Zhang J, Tang D, Tang Y 2018 Biosens. Bioelectron. 117 3128Google Scholar

    [9]

    Jia X, Li J, Han L, Ren J, Yang X, Wang E 2012 ACS Nano 6 3311Google Scholar

    [10]

    Chen A, Ma S, Zhuo Y, Chai Y, Yuan R 2016 Anal. Chem. 88 3203Google Scholar

    [11]

    Fu J, Zhang Z, Li G 2019 Chinese Chem. Let. 30 285Google Scholar

    [12]

    Wagenknecht H A 2003 Angew. Chem. Int. Ed. 42 3204Google Scholar

    [13]

    Wheate N J, Walker S, Craig G E, Oun R 2010 Dalton Trans. 39 8113Google Scholar

    [14]

    Erxleben A 2017 CHIMIA 71 102Google Scholar

    [15]

    Belmont P, Constan, J F, Demeunynck M 2001 Chem. Soc. Rev. 30 70Google Scholar

    [16]

    Shamsi M H, Kraatz H B 2013 J. Inorg. Organomet. Polym. Mater. 23 4Google Scholar

    [17]

    Sigel H 1993 Chem. Soc. Rev. 22 255Google Scholar

    [18]

    Pages B J, Ang D L, Wright E P, Aldrich-Wright J R 2015 Dalton Trans. 44 3505Google Scholar

    [19]

    Müller J 2010 Metallomics 2 318Google Scholar

    [20]

    Kellett A, Molphy Z, Slator C, McKee V, Farrell N P 2019 Chem. Soc. Rev. 48 971Google Scholar

    [21]

    Ono A, Togashi H 2004 Angew. Chem. 116 4400Google Scholar

    [22]

    Jiang X, Wang H, Wang H, Yuan R, Chai Y 2016 Anal. Chem. 88 9243Google Scholar

    [23]

    Zhang B, Guo L H 2012 Biosens. Bioelectron. 37 112Google Scholar

    [24]

    Huang J, Gao X, Jia J, Kim J K, Li Z 2014 Anal. Chem. 86 3209Google Scholar

    [25]

    Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamato I, Tanaka Y 2008 Chem. Commun. 39 4825Google Scholar

    [26]

    Zhao C, Qu K, Song Y, Xu C, Ren J, Qu X 2010 Chem. Eur. J. 16 8147Google Scholar

    [27]

    Zheng Y, Yang C, Yang F, Yang X 2014 Anal. Chem. 86 3849Google Scholar

    [28]

    Park S, Sugiyama H 2010 Angew. Chem. Int. Ed. 49 3870Google Scholar

    [29]

    Wang C, Li Y, Jia G, Liu Y, Lu S, Li C 2012 Chem. Commun. 48 6232Google Scholar

    [30]

    Cepeda V, Fuertes M A, Castilla J, Alonso C, Quevedo C, Perez J M 2007 Anti-Cancer. Agents Med. Chem. 7 3Google Scholar

    [31]

    Wang D, Lippard S J 2005 Nat. Rev. Drug Discovery 4 307Google Scholar

    [32]

    Hartinger C G, Zorbas-Seifried S, Jakupec M A, Kynast B, Zorbas H, Keppler B K 2006 J. Inorg. Biochem. 100 891Google Scholar

    [33]

    Komor A C, Barton J K 2013 Chem. Commun. 49 3617Google Scholar

    [34]

    Wu T, Liu J, Liu M, Liu S, Zhao S. Tian R, Wei D, Liu Y, Zhao Y, Xiao H, Ding B 2019 Angew. Chem. In. Ed. 58 14224Google Scholar

    [35]

    Chen Y. Xu J, Su J, Xiang Y, Yuan R, Chai Y 2012 Anal. Chem. 84 7750Google Scholar

    [36]

    Wang H, Yuan Y, Zhuo Y, Chai Y, Yuan R 2016 Anal. Chem. 88 5797Google Scholar

    [37]

    Li S K, Chen A Y, Chai Y Q, Yuan R, Zhuo Y 2016 Electrochim. Acta 212 767Google Scholar

    [38]

    Kosman J, Juskowiak B 2011 Anal. Chim. Acta 707 7Google Scholar

    [39]

    Yang X, Li T, Li B, Wang E 2010 Analyst 135 71Google Scholar

    [40]

    Huang R, He L, Xia Y, Xu H, Liu C, Xie H, Wang S, Peng Li, Liu Y, Liu Y, He N, Li Z 2019 Small 15 1900735Google Scholar

    [41]

    Golub E, Freeman R, Willner I 2011 Angew. Chem. 123 11914Google Scholar

    [42]

    Chen Y, Phipps M L, Werner J H, Chakraborty S, Martinez J S 2018 Accounts Chem. Res. 51 2756Google Scholar

    [43]

    Petty J T, Zheng J, Hud N V, Dickson R M 2004 J. Am. Chem. Soc. 126 5207Google Scholar

    [44]

    Sharma J, Yeh H C, Yoo H, Werner J H, Martinez J S 2010 Chem. Commun. 46 3280Google Scholar

    [45]

    Lan G Y, Chen W Y, Chang H T 2011 RSC Adv. 1 802Google Scholar

    [46]

    Gwinn E G, O'Neill P, Guerrero A J, Bouwmeester D, Fygenson D K 2008 Adv. Mater. 20 279Google Scholar

    [47]

    Feng L, Huang Z, Ren J, Qu X 2012 Nucleic Acids Res. 40 e122Google Scholar

    [48]

    Liu Y Q, Zhang M, Yin B C, Ye B C 2012 Anal. Chem. 84 5165Google Scholar

    [49]

    Liu J J, Song X R, Wang Y W, Zheng A X, Chen G N, Yang H H 2012 Anal. Chim. Acta 749 70Google Scholar

    [50]

    Lyu D, Li J, Wang X, Guo W, Wang E 2018 Anal. Chem. 91 2050Google Scholar

    [51]

    Thomas A C 2012 Chem. Commun. 48 6845Google Scholar

    [52]

    Qing Z, He X, He D, Wang K, Xu F, Qing T, Yang X 2013 Angew. Chem. In. Ed. 52 9719Google Scholar

    [53]

    Zhou F, Cui X, Shang A, Lian J, Yang L, Jin Y, Li B 2017 Microchim. Acta 184 773Google Scholar

    [54]

    Ai J, Guo W, Li B, Li T, Li D, Wang E 2012 Talanta 88 450Google Scholar

    [55]

    Fu Y, Zhao X, Zhang J, Li W 2014 J. Phys. Chem. C 118 18116Google Scholar

    [56]

    Li W, Li W, Hu Y, Xia Y, Shen Q, Nie Z, Huang Y, Yao S 2013 Biosen. Bioelectron. 47 345Google Scholar

    [57]

    Wu L L, Wang L Y, Xie Z J, Pan N, Peng C F 2016 Sens. Actuators, B 235 110Google Scholar

    [58]

    Navani N K, Li Y 2006 Curr. Opin. Chem. Biol. 10 272Google Scholar

    [59]

    Stoltenburg R, Reinemann C, Strehlitz B 2007 Biomol. Eng. 24 381Google Scholar

    [60]

    Zhan S, Wu Y, Wang L, Zhan X, Zhou P 2016 Biosens Bioelectron. 86 353Google Scholar

    [61]

    Dass C R, Choong P F, Khachigian L M 2008 Mol. Cancer Ther. 7 243Google Scholar

    [62]

    McGhee C E, Loh K Y, Lu Y 2017 Curr. Opin. Biotechnol. 45 191Google Scholar

    [63]

    Fan H, Zhang X, Lu Y 2017 Sci. China Chem. 60 591Google Scholar

    [64]

    Li L, Xu S, Yan H, Li X, Yazd H S, Li X, Huang T, Cui C, Jiang J, Tan W 2020 Angew. Chem. Int. Ed. 59 2Google Scholar

    [65]

    Pang X, Cui C, Wan S., Jiang Y, Zhang L, Xia L, Li L, Li X, Tan W 2018 Cancers 10 47Google Scholar

    [66]

    Meng H M, Liu H, Kuai H, Peng R, Mo L, Zhang X B 2016 Chem. Soc. Rev. 45 2583Google Scholar

    [67]

    Li S, Xu J, Wang S, Xia X, Chen L, Chen Z 2019 Chinese Chem. Lett. 30 1581Google Scholar

    [68]

    Zhang D, Yin L, Meng Z, Yu A, Guo L, Wang H 2014 Anal. Chim. Acta 812 161Google Scholar

    [69]

    Lei Y M, Huang W X, Zhao M, Chai Y Q, Yuan R, Zhuo Y 2015 Anal. Chem. 87 7787

    [70]

    陈俊俊, 李称, 徐斐, 曹慧, 叶泰, 于劲松, 袁敏 2018 工业微生物 3 11Google Scholar

    Chen J J, Li C, Xu F, Cao H, Ye T, Y u, J S, Yuan M 2018 Industrial Microorganisms 3 11Google Scholar

    [71]

    Williamson J R 1994 Annu. Rev. Bioph. Biom. 23 703Google Scholar

    [72]

    Chung C H, Kim J H, Jung J, Chung B H 2013 Biosen. Bioelectron. 41 827Google Scholar

    [73]

    Peng Y, Li Y, Li L, Zhu J J 2018 J. Hazard. Mater. 359 121Google Scholar

    [74]

    Breaker R R, Joyce G F 1994 Chem. Biol. 1 223Google Scholar

    [75]

    Ihms H E, Lu Y 2012 Humana Press 848 297Google Scholar

    [76]

    Liang W B, Zhuo Y, Zheng Y N, Xiong C Y, Chai Y Q, Yuan R 2017 ACS Appl. Mater. Interfaces 9 39812Google Scholar

    [77]

    Hong C, Kim D M, Baek A, Chung H, Jung W, Kim D E 2015 Chem. Commun. 51 5641Google Scholar

    [78]

    Chen J, Zuehlke A, Deng B, Peng H, Hou X, Zhang H 2017 Anal. Chem. 89 12888Google Scholar

    [79]

    Fan H, Zhao Z, Yan G, Zhang X, Yang C, Meng H, Chen Z, Liu H, Tan W 2015 Angew. Chem. 127 4883Google Scholar

    [80]

    Wang H, Wang H, Wu Q, Liang M, Liu X, Wang F 2019 Chem. Sci. 10 9597Google Scholar

    [81]

    Khakshoor O, Kool E T 2011 Chem. Commun. 47 7018Google Scholar

    [82]

    Pinheiro V B, Holliger P 2012 Curr. Opin. Chem. Biol. 16 245Google Scholar

    [83]

    Nielsen P E, Haaima G 1997 Chem. Soc. Rev. 26 73Google Scholar

    [84]

    Corradini R, Sforza S, Tedeschi T, Totsingan F, Manicardi A, Marchelli R 2011 Curr. Top. Med. Chem. 11 1535Google Scholar

    [85]

    Whittell G R, Manners I 2007 Adv. Mater. 19 3439Google Scholar

    [86]

    James H R 2012 Chem. Commun. 48 12165Google Scholar

    [87]

    Clever G H, Shionoya M 2010 Coord. Chem. Rev. 254 2391Google Scholar

    [88]

    Johannsen S, Megger N, Böhme D, Sige R K, Mn F, Manicard Nat. Chem. 2 229

    [89]

    Zhu T, Wu Q, Chen P, Ding Y 2009 J. Organomet. Chem. 694 21Google Scholar

    [90]

    Li D, Song S, Fan C 2010 Accounts Chem. Res. 43 631Google Scholar

    [91]

    Abdullah R, Xie S, Wang R, Jin C, Du Y, Fu T, Li J, Zhang L, Tan W 2018 Anal. Chem. 91 2074Google Scholar

    [92]

    Wang R, Zhu G, Mei L, Xie Y, Ma H, Ye M, Qing F L, Tan W 2014 J. Am. Chem. Soc. 136 2731Google Scholar

    [93]

    Jin C, Liu X, Bai H, Wang R, Tan J, Peng X, Tan W 2017 ACS Nano 11 12087Google Scholar

    [94]

    Jin C, He J, Zou J, Xuan W, Fu T, Wang R, Tan W 2019 Nat. Commun. 10 2704Google Scholar

    [95]

    Xie S, Qiu L, Cui L, Liu H, Sun Y, Liang H, Ding D, He L, Liu H, Zhang J, Chen, Z. Zhang X, Tan W 2017 Chem 3 1021Google Scholar

    [96]

    Tan J, Li H, Hu X, Abdullah R, Xie S, Zhang L, Zhao M, Luo Q, Li Y, Sun Z, Yuan Q, Tan W 2019 Chem 5 1775Google Scholar

    [97]

    Zhang L, Abdullah R, H X, Bai H, Fan H, He L, Liang H, Zou J, Liu Y, Zhang, X. Tan W 2019 J. Am. Chem. Soc. 141 4282Google Scholar

    [98]

    Kallenbach N R, Ma R I, Seeman N C 1983 Nature 305 829Google Scholar

    [99]

    Seeman N C 2003 Nature 421 427Google Scholar

    [100]

    Aldaye F A, Palmer A L, Sleiman H F 2008 Science 321 1795Google Scholar

    [101]

    Seeman N C 2010 Annu. Rev. Biochem. 79 6Google Scholar

    [102]

    Wang Z G, Ding B 2014 Accounts Chem. Res. 47 1654Google Scholar

    [103]

    Veneziano R, Moyer T J, Stone M B, Wamhoff E C, Read B J, Mukherjee S, Shepherd T R, Das J, Schief W R, Irvine D J, Bathe M 2020 Nat. Nanotechnol. 15 716Google Scholar

    [104]

    He X, Dong L, Wang W, Lin N, Mi Y 2013 Chem. Commun. 49 2906Google Scholar

    [105]

    Liu Y, Chen Q, Liu J, Yang X, Guo Q, Li L, Liu W, Wang K 2017 Anal. Chem. 89 3590Google Scholar

    [106]

    Ke Y, Sharma J, Liu M, Jahn K, Liu Y, Yan H 2009 Nano Lett. 9 2445Google Scholar

    [107]

    Sadowski J P, Calvert C R, Zhang D Y, Pierce N A, Yin P 2014 ACS Nano 8 3251Google Scholar

    [108]

    Mou Q, Ma Y, Pan G, Xue B, Yan D, Zhang C, Zhu X 2017 Angew. Chem. 129 12702Google Scholar

    [109]

    Shiu S C C, Fraser L A, Ding Y, Tanner J A 2018 Molecules 23 1695Google Scholar

    [110]

    Um S H, Lee J B, Park N, Kwon, S Y, Umbach C C, Luo D 2006 Nat. Mater. 5 797Google Scholar

    [111]

    Shahbazi M A, Baulethk N, Kwon, S Y, Umbach C C Adv. Therap. 1 1800042

    [112]

    He Y, Tian Y, Chen Y, Deng Z, Ribbe A E, Mao C 2005 Angew. Chem. Int. Ed. 44 6694Google Scholar

    [113]

    He Y, Chen Y, Liu H, Ribbe A E, Mao C 2005 J. Am. Chem. Soc. 127 12202Google Scholar

    [114]

    Douglas S M, Marblestone A H, Teerapittayanon S, Vazquez A, Church G M, Shih W M 2009 Nucleic Acids Res. 37 5001Google Scholar

    [115]

    Bila H, Kurisinkal E E, Bastings M M 2019 Biomater. Sci. 7 532Google Scholar

    [116]

    Rothemund P W K 2006 Nature 440 297Google Scholar

    [117]

    Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W, Bathe M 2016 Science 352 1534Google Scholar

    [118]

    Schreiber R, Do J, Roller E M, Zhang T, Sch, ler, V J, Nickels P C, Feldmann J, Liedl T 2014 Nat. Nanotechnol. 9 74Google Scholar

    [119]

    Zhan P, Wen T, Wang Z G, He Y, Shi J, Wang T. Liu X, Lu G, Ding B 2018 Angew. Chem. Int. Ed. 57 2846Google Scholar

    [120]

    Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R N, Bokor J 2010 J. Am. Chem. Soc. 132 3248Google Scholar

    [121]

    Tian Y, Wang T, Liu W, Xin H L, Li H, Ke Y, M. Shih W, Gang O 2015 Nat. Nanotechnol. 10 637Google Scholar

    [122]

    Jia S, Wang J, Xie M, Sun J, Liu H, Zhang Y, Chao J, Li J, Wang L, Lin J, Gothelf K V, Fan C 2019 Nat. Commun. 10 5597Google Scholar

    [123]

    Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C 2018 Nature 559 593Google Scholar

    [124]

    Schreiber R, Luong N, Fan, Z, Kuzyk A, Nickels P C, Zhang T, Smith D M, Yurke B, Kuang W, Govorov A O, Liedl T 2013 Nat. Commun. 4 1Google Scholar

    [125]

    Urban M J, Dutta P K, Wang P, Duan, X, Shen X, Ding B, Ke Y, Liu N 2016 J. Am. Chem. Soc. 138 5495Google Scholar

    [126]

    Wang P, Meyer T A, Pan V, Dutta P K, Ke Y 2017 Chem 2 359Google Scholar

    [127]

    Loretan M, Domljanovic I, Lakatos M, Re Y 2017 Ding B, Ke Y Materials 13 2185Google Scholar

    [128]

    Fu J, Liu M, Liu Y, Woodbury N W, Yan H 2012 J. Am. Chem. Soc. 134 5516Google Scholar

    [129]

    Liu N, Dai M, Saka S K, Yin P 2019 Nat. Chem. 11 1001Google Scholar

    [130]

    Braun E, Eichen Y, Sivan U, Ben-Yoseph G 1998 Nature 391 775Google Scholar

    [131]

    Liu J, Geng Y, Pound E, Gyawali S, Ashton J R, Hickey J, Woolley A T, Harb J N 2011 ACS Nano 5 2240Google Scholar

    [132]

    Geng Y, Liu J, Pound E, Gyawali S, Harb J N, Woolley A T 2011 J. Mater. Chem. 21 12126Google Scholar

    [133]

    Geng Y, Pearson A C, Gates E P, Uprety B, Davis R C, Harb J N, Woolley A T 2013 Langmuir 29 3482Google Scholar

    [134]

    Pilo-Pais M, Goldberg S, Samano E, LaBean T H, Finkelstein G 2011 Nano Lett. 11 3489Google Scholar

    [135]

    Helmi S, Ziegler C, Kauert D J, Seidel R 2014 Nano Lett. 14 6693Google Scholar

    [136]

    Sun W, Boulais E, Hakobyan Y, Wang W L, Guan A, Bathe M, Yin P 2014 Science 346 6210Google Scholar

  • [1] 刘天瑶, 刘灿, 刘开辉. 表界面调控米级二维单晶原子制造. 物理学报, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [2] 高鸿钧. “原子制造:基础研究与前沿探索”专题编者按. 物理学报, 2021, 70(2): 020101. doi: 10.7498/aps.70.020101
    [3] 吉建伟, 山村和也, 邓辉. 面向单晶SiC原子级表面制造的等离子体辅助抛光技术. 物理学报, 2021, 70(6): 068102. doi: 10.7498/aps.70.20202014
    [4] 戴李知, 胡晓雪, 刘鹏, 田野. DNA折纸结构介导的多尺度纳米结构精准制造. 物理学报, 2021, 70(6): 068201. doi: 10.7498/aps.70.20201689
    [5] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [6] 钟虓䶮, 李卓. 原子尺度材料三维结构、磁性及动态演变的透射电子显微学表征. 物理学报, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [7] 战海洋, 邢飞, 张利. 面向近原子尺度制造的光学测量精度极限分析. 物理学报, 2021, 70(6): 060703. doi: 10.7498/aps.70.20201924
    [8] 郭秦敏, 秦志辉. 气相沉积技术在原子制造领域的发展与应用. 物理学报, 2021, 70(2): 028101. doi: 10.7498/aps.70.20201436
    [9] 杨蓓, 李茜, 柳华杰, 樊春海. 面向原子制造的框架核酸研究进展. 物理学报, 2021, 70(2): 026201. doi: 10.7498/aps.70.20201437
    [10] 王路阔, 段芳莉. 金属原子催化作用下缺陷石墨烯薄膜的自修复过程. 物理学报, 2019, 68(19): 193101. doi: 10.7498/aps.68.20190995
    [11] 张一川, 杨宽, 李唤, 朱晓东. ICP微等离子体射流在快速成形制造中的应用. 物理学报, 2016, 65(14): 145201. doi: 10.7498/aps.65.145201
    [12] 鲁金蕾, 王晓晨, 容晓晖, 刘雳宇. 三维微纳米制造技术在癌症生物物理研究中的应用. 物理学报, 2015, 64(5): 058705. doi: 10.7498/aps.64.058705
    [13] 杨祎巍, 张宏博, 李斌. 面向纳米电路的改进型卷积核可制造性模型建模研究. 物理学报, 2015, 64(5): 058501. doi: 10.7498/aps.64.058501
    [14] 王金猛, 孔德鹏, 王丽莉. 大尺寸聚合物光纤面板制造新技术的初步研究. 物理学报, 2012, 61(5): 054216. doi: 10.7498/aps.61.054216
    [15] 林秋宝, 李爱玉, 文玉华, 朱梓忠. 简单金属Al原子链的磁性. 物理学报, 2009, 58(11): 7983-7987. doi: 10.7498/aps.58.7983
    [16] 刘秀喜, 王公堂. 有机硅化合物-金属氧化物绝缘保护材料在制造高压晶闸管中的应用研究. 物理学报, 2008, 57(1): 576-580. doi: 10.7498/aps.57.576
    [17] 王公堂, 刘秀喜. 镓铝双质掺杂在制造快速晶闸管中的应用研究. 物理学报, 2007, 56(8): 4823-4828. doi: 10.7498/aps.56.4823
    [18] 高洁, 张玉珍, 陈永魁, 凌增柏. 约瑟夫逊隧道结的制造工艺及其四端子电阻的研究. 物理学报, 1978, 27(2): 219-223. doi: 10.7498/aps.27.219
    [19] 金建中, 崔遂先. 金属油扩散泵的研究制造. 物理学报, 1960, 16(3): 168-174. doi: 10.7498/aps.16.168
    [20] 吴大猷. 硷金属原子之Stark效应. 物理学报, 1936, 2(1): 15-21. doi: 10.7498/aps.2.15
计量
  • 文章访问数:  11490
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-30
  • 修回日期:  2020-10-02
  • 上网日期:  2021-01-09
  • 刊出日期:  2021-01-20

/

返回文章
返回