-
Atomic-scale and close-to-atomic scale manufacturing, a frontier hot issue in international academic research, is a cutting-edge manufacturing technique in which atoms are directly used as the manipulation object and atomic-scale structures with specific functions are established to meet the requirements for mass productions. This review focuses on precise atomic-scale manufacturing technology of nucleic acid materials. Firstly, the basic structures and functions of nucleic acid materials are introduced, and the basic principles of the interaction between DNA and metal atoms are discussed. Then the development process and breakthrough progress of nucleic acid materials-mediated precise atomic-scale manufacturing are introduced from the aspects of natural nucleic acid materials, artificial base “molecular elements”, and nucleic acid nanostructures. Finally, the challenges and opportunities in this field are systematically summarized and some suggestions for future development are given.
-
Keywords:
- atomic manufacturing /
- nucleic acid materials /
- metal atoms /
- precision assembly
[1] 房丰洲 2020 中国机械工程 31 1009Google Scholar
Fang F 2020 Chinese Mech. Eng. 31 1009Google Scholar
[2] 李沫, 李倩, 张健 2016 太赫兹科学与电子信息学报 14 793Google Scholar
Li M, Li Q, Zhang J 2016 J. Terahertz Sci. Electron. Inf. Technol. 14 793Google Scholar
[3] Jiang D, England C G, Cai W 2016 J. Control. Release 239 27Google Scholar
[4] Dai Z, Leung H M, Lo P K 2017 Small 13 1602881Google Scholar
[5] Lippert B 2000 Coord. Chem. Rev. 200 487Google Scholar
[6] Morris D L 2014 Biomol. Concepts 5 397Google Scholar
[7] Liu J, Lu Y 2004 J. Am. Chem. Soc. 126 12298Google Scholar
[8] Cai W, Xie S, Zhang J, Tang D, Tang Y 2018 Biosens. Bioelectron. 117 3128Google Scholar
[9] Jia X, Li J, Han L, Ren J, Yang X, Wang E 2012 ACS Nano 6 3311Google Scholar
[10] Chen A, Ma S, Zhuo Y, Chai Y, Yuan R 2016 Anal. Chem. 88 3203Google Scholar
[11] Fu J, Zhang Z, Li G 2019 Chinese Chem. Let. 30 285Google Scholar
[12] Wagenknecht H A 2003 Angew. Chem. Int. Ed. 42 3204Google Scholar
[13] Wheate N J, Walker S, Craig G E, Oun R 2010 Dalton Trans. 39 8113Google Scholar
[14] Erxleben A 2017 CHIMIA 71 102Google Scholar
[15] Belmont P, Constan, J F, Demeunynck M 2001 Chem. Soc. Rev. 30 70Google Scholar
[16] Shamsi M H, Kraatz H B 2013 J. Inorg. Organomet. Polym. Mater. 23 4Google Scholar
[17] Sigel H 1993 Chem. Soc. Rev. 22 255Google Scholar
[18] Pages B J, Ang D L, Wright E P, Aldrich-Wright J R 2015 Dalton Trans. 44 3505Google Scholar
[19] Müller J 2010 Metallomics 2 318Google Scholar
[20] Kellett A, Molphy Z, Slator C, McKee V, Farrell N P 2019 Chem. Soc. Rev. 48 971Google Scholar
[21] Ono A, Togashi H 2004 Angew. Chem. 116 4400Google Scholar
[22] Jiang X, Wang H, Wang H, Yuan R, Chai Y 2016 Anal. Chem. 88 9243Google Scholar
[23] Zhang B, Guo L H 2012 Biosens. Bioelectron. 37 112Google Scholar
[24] Huang J, Gao X, Jia J, Kim J K, Li Z 2014 Anal. Chem. 86 3209Google Scholar
[25] Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamato I, Tanaka Y 2008 Chem. Commun. 39 4825Google Scholar
[26] Zhao C, Qu K, Song Y, Xu C, Ren J, Qu X 2010 Chem. Eur. J. 16 8147Google Scholar
[27] Zheng Y, Yang C, Yang F, Yang X 2014 Anal. Chem. 86 3849Google Scholar
[28] Park S, Sugiyama H 2010 Angew. Chem. Int. Ed. 49 3870Google Scholar
[29] Wang C, Li Y, Jia G, Liu Y, Lu S, Li C 2012 Chem. Commun. 48 6232Google Scholar
[30] Cepeda V, Fuertes M A, Castilla J, Alonso C, Quevedo C, Perez J M 2007 Anti-Cancer. Agents Med. Chem. 7 3Google Scholar
[31] Wang D, Lippard S J 2005 Nat. Rev. Drug Discovery 4 307Google Scholar
[32] Hartinger C G, Zorbas-Seifried S, Jakupec M A, Kynast B, Zorbas H, Keppler B K 2006 J. Inorg. Biochem. 100 891Google Scholar
[33] Komor A C, Barton J K 2013 Chem. Commun. 49 3617Google Scholar
[34] Wu T, Liu J, Liu M, Liu S, Zhao S. Tian R, Wei D, Liu Y, Zhao Y, Xiao H, Ding B 2019 Angew. Chem. In. Ed. 58 14224Google Scholar
[35] Chen Y. Xu J, Su J, Xiang Y, Yuan R, Chai Y 2012 Anal. Chem. 84 7750Google Scholar
[36] Wang H, Yuan Y, Zhuo Y, Chai Y, Yuan R 2016 Anal. Chem. 88 5797Google Scholar
[37] Li S K, Chen A Y, Chai Y Q, Yuan R, Zhuo Y 2016 Electrochim. Acta 212 767Google Scholar
[38] Kosman J, Juskowiak B 2011 Anal. Chim. Acta 707 7Google Scholar
[39] Yang X, Li T, Li B, Wang E 2010 Analyst 135 71Google Scholar
[40] Huang R, He L, Xia Y, Xu H, Liu C, Xie H, Wang S, Peng Li, Liu Y, Liu Y, He N, Li Z 2019 Small 15 1900735Google Scholar
[41] Golub E, Freeman R, Willner I 2011 Angew. Chem. 123 11914Google Scholar
[42] Chen Y, Phipps M L, Werner J H, Chakraborty S, Martinez J S 2018 Accounts Chem. Res. 51 2756Google Scholar
[43] Petty J T, Zheng J, Hud N V, Dickson R M 2004 J. Am. Chem. Soc. 126 5207Google Scholar
[44] Sharma J, Yeh H C, Yoo H, Werner J H, Martinez J S 2010 Chem. Commun. 46 3280Google Scholar
[45] Lan G Y, Chen W Y, Chang H T 2011 RSC Adv. 1 802Google Scholar
[46] Gwinn E G, O'Neill P, Guerrero A J, Bouwmeester D, Fygenson D K 2008 Adv. Mater. 20 279Google Scholar
[47] Feng L, Huang Z, Ren J, Qu X 2012 Nucleic Acids Res. 40 e122Google Scholar
[48] Liu Y Q, Zhang M, Yin B C, Ye B C 2012 Anal. Chem. 84 5165Google Scholar
[49] Liu J J, Song X R, Wang Y W, Zheng A X, Chen G N, Yang H H 2012 Anal. Chim. Acta 749 70Google Scholar
[50] Lyu D, Li J, Wang X, Guo W, Wang E 2018 Anal. Chem. 91 2050Google Scholar
[51] Thomas A C 2012 Chem. Commun. 48 6845Google Scholar
[52] Qing Z, He X, He D, Wang K, Xu F, Qing T, Yang X 2013 Angew. Chem. In. Ed. 52 9719Google Scholar
[53] Zhou F, Cui X, Shang A, Lian J, Yang L, Jin Y, Li B 2017 Microchim. Acta 184 773Google Scholar
[54] Ai J, Guo W, Li B, Li T, Li D, Wang E 2012 Talanta 88 450Google Scholar
[55] Fu Y, Zhao X, Zhang J, Li W 2014 J. Phys. Chem. C 118 18116Google Scholar
[56] Li W, Li W, Hu Y, Xia Y, Shen Q, Nie Z, Huang Y, Yao S 2013 Biosen. Bioelectron. 47 345Google Scholar
[57] Wu L L, Wang L Y, Xie Z J, Pan N, Peng C F 2016 Sens. Actuators, B 235 110Google Scholar
[58] Navani N K, Li Y 2006 Curr. Opin. Chem. Biol. 10 272Google Scholar
[59] Stoltenburg R, Reinemann C, Strehlitz B 2007 Biomol. Eng. 24 381Google Scholar
[60] Zhan S, Wu Y, Wang L, Zhan X, Zhou P 2016 Biosens Bioelectron. 86 353Google Scholar
[61] Dass C R, Choong P F, Khachigian L M 2008 Mol. Cancer Ther. 7 243Google Scholar
[62] McGhee C E, Loh K Y, Lu Y 2017 Curr. Opin. Biotechnol. 45 191Google Scholar
[63] Fan H, Zhang X, Lu Y 2017 Sci. China Chem. 60 591Google Scholar
[64] Li L, Xu S, Yan H, Li X, Yazd H S, Li X, Huang T, Cui C, Jiang J, Tan W 2020 Angew. Chem. Int. Ed. 59 2Google Scholar
[65] Pang X, Cui C, Wan S., Jiang Y, Zhang L, Xia L, Li L, Li X, Tan W 2018 Cancers 10 47Google Scholar
[66] Meng H M, Liu H, Kuai H, Peng R, Mo L, Zhang X B 2016 Chem. Soc. Rev. 45 2583Google Scholar
[67] Li S, Xu J, Wang S, Xia X, Chen L, Chen Z 2019 Chinese Chem. Lett. 30 1581Google Scholar
[68] Zhang D, Yin L, Meng Z, Yu A, Guo L, Wang H 2014 Anal. Chim. Acta 812 161Google Scholar
[69] Lei Y M, Huang W X, Zhao M, Chai Y Q, Yuan R, Zhuo Y 2015 Anal. Chem. 87 7787
[70] 陈俊俊, 李称, 徐斐, 曹慧, 叶泰, 于劲松, 袁敏 2018 工业微生物 3 11Google Scholar
Chen J J, Li C, Xu F, Cao H, Ye T, Y u, J S, Yuan M 2018 Industrial Microorganisms 3 11Google Scholar
[71] Williamson J R 1994 Annu. Rev. Bioph. Biom. 23 703Google Scholar
[72] Chung C H, Kim J H, Jung J, Chung B H 2013 Biosen. Bioelectron. 41 827Google Scholar
[73] Peng Y, Li Y, Li L, Zhu J J 2018 J. Hazard. Mater. 359 121Google Scholar
[74] Breaker R R, Joyce G F 1994 Chem. Biol. 1 223Google Scholar
[75] Ihms H E, Lu Y 2012 Humana Press 848 297Google Scholar
[76] Liang W B, Zhuo Y, Zheng Y N, Xiong C Y, Chai Y Q, Yuan R 2017 ACS Appl. Mater. Interfaces 9 39812Google Scholar
[77] Hong C, Kim D M, Baek A, Chung H, Jung W, Kim D E 2015 Chem. Commun. 51 5641Google Scholar
[78] Chen J, Zuehlke A, Deng B, Peng H, Hou X, Zhang H 2017 Anal. Chem. 89 12888Google Scholar
[79] Fan H, Zhao Z, Yan G, Zhang X, Yang C, Meng H, Chen Z, Liu H, Tan W 2015 Angew. Chem. 127 4883Google Scholar
[80] Wang H, Wang H, Wu Q, Liang M, Liu X, Wang F 2019 Chem. Sci. 10 9597Google Scholar
[81] Khakshoor O, Kool E T 2011 Chem. Commun. 47 7018Google Scholar
[82] Pinheiro V B, Holliger P 2012 Curr. Opin. Chem. Biol. 16 245Google Scholar
[83] Nielsen P E, Haaima G 1997 Chem. Soc. Rev. 26 73Google Scholar
[84] Corradini R, Sforza S, Tedeschi T, Totsingan F, Manicardi A, Marchelli R 2011 Curr. Top. Med. Chem. 11 1535Google Scholar
[85] Whittell G R, Manners I 2007 Adv. Mater. 19 3439Google Scholar
[86] James H R 2012 Chem. Commun. 48 12165Google Scholar
[87] Clever G H, Shionoya M 2010 Coord. Chem. Rev. 254 2391Google Scholar
[88] Johannsen S, Megger N, Böhme D, Sige R K, Mn F, Manicard Nat. Chem. 2 229
[89] Zhu T, Wu Q, Chen P, Ding Y 2009 J. Organomet. Chem. 694 21Google Scholar
[90] Li D, Song S, Fan C 2010 Accounts Chem. Res. 43 631Google Scholar
[91] Abdullah R, Xie S, Wang R, Jin C, Du Y, Fu T, Li J, Zhang L, Tan W 2018 Anal. Chem. 91 2074Google Scholar
[92] Wang R, Zhu G, Mei L, Xie Y, Ma H, Ye M, Qing F L, Tan W 2014 J. Am. Chem. Soc. 136 2731Google Scholar
[93] Jin C, Liu X, Bai H, Wang R, Tan J, Peng X, Tan W 2017 ACS Nano 11 12087Google Scholar
[94] Jin C, He J, Zou J, Xuan W, Fu T, Wang R, Tan W 2019 Nat. Commun. 10 2704Google Scholar
[95] Xie S, Qiu L, Cui L, Liu H, Sun Y, Liang H, Ding D, He L, Liu H, Zhang J, Chen, Z. Zhang X, Tan W 2017 Chem 3 1021Google Scholar
[96] Tan J, Li H, Hu X, Abdullah R, Xie S, Zhang L, Zhao M, Luo Q, Li Y, Sun Z, Yuan Q, Tan W 2019 Chem 5 1775Google Scholar
[97] Zhang L, Abdullah R, H X, Bai H, Fan H, He L, Liang H, Zou J, Liu Y, Zhang, X. Tan W 2019 J. Am. Chem. Soc. 141 4282Google Scholar
[98] Kallenbach N R, Ma R I, Seeman N C 1983 Nature 305 829Google Scholar
[99] Seeman N C 2003 Nature 421 427Google Scholar
[100] Aldaye F A, Palmer A L, Sleiman H F 2008 Science 321 1795Google Scholar
[101] Seeman N C 2010 Annu. Rev. Biochem. 79 6Google Scholar
[102] Wang Z G, Ding B 2014 Accounts Chem. Res. 47 1654Google Scholar
[103] Veneziano R, Moyer T J, Stone M B, Wamhoff E C, Read B J, Mukherjee S, Shepherd T R, Das J, Schief W R, Irvine D J, Bathe M 2020 Nat. Nanotechnol. 15 716Google Scholar
[104] He X, Dong L, Wang W, Lin N, Mi Y 2013 Chem. Commun. 49 2906Google Scholar
[105] Liu Y, Chen Q, Liu J, Yang X, Guo Q, Li L, Liu W, Wang K 2017 Anal. Chem. 89 3590Google Scholar
[106] Ke Y, Sharma J, Liu M, Jahn K, Liu Y, Yan H 2009 Nano Lett. 9 2445Google Scholar
[107] Sadowski J P, Calvert C R, Zhang D Y, Pierce N A, Yin P 2014 ACS Nano 8 3251Google Scholar
[108] Mou Q, Ma Y, Pan G, Xue B, Yan D, Zhang C, Zhu X 2017 Angew. Chem. 129 12702Google Scholar
[109] Shiu S C C, Fraser L A, Ding Y, Tanner J A 2018 Molecules 23 1695Google Scholar
[110] Um S H, Lee J B, Park N, Kwon, S Y, Umbach C C, Luo D 2006 Nat. Mater. 5 797Google Scholar
[111] Shahbazi M A, Baulethk N, Kwon, S Y, Umbach C C Adv. Therap. 1 1800042
[112] He Y, Tian Y, Chen Y, Deng Z, Ribbe A E, Mao C 2005 Angew. Chem. Int. Ed. 44 6694Google Scholar
[113] He Y, Chen Y, Liu H, Ribbe A E, Mao C 2005 J. Am. Chem. Soc. 127 12202Google Scholar
[114] Douglas S M, Marblestone A H, Teerapittayanon S, Vazquez A, Church G M, Shih W M 2009 Nucleic Acids Res. 37 5001Google Scholar
[115] Bila H, Kurisinkal E E, Bastings M M 2019 Biomater. Sci. 7 532Google Scholar
[116] Rothemund P W K 2006 Nature 440 297Google Scholar
[117] Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W, Bathe M 2016 Science 352 1534Google Scholar
[118] Schreiber R, Do J, Roller E M, Zhang T, Sch, ler, V J, Nickels P C, Feldmann J, Liedl T 2014 Nat. Nanotechnol. 9 74Google Scholar
[119] Zhan P, Wen T, Wang Z G, He Y, Shi J, Wang T. Liu X, Lu G, Ding B 2018 Angew. Chem. Int. Ed. 57 2846Google Scholar
[120] Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R N, Bokor J 2010 J. Am. Chem. Soc. 132 3248Google Scholar
[121] Tian Y, Wang T, Liu W, Xin H L, Li H, Ke Y, M. Shih W, Gang O 2015 Nat. Nanotechnol. 10 637Google Scholar
[122] Jia S, Wang J, Xie M, Sun J, Liu H, Zhang Y, Chao J, Li J, Wang L, Lin J, Gothelf K V, Fan C 2019 Nat. Commun. 10 5597Google Scholar
[123] Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C 2018 Nature 559 593Google Scholar
[124] Schreiber R, Luong N, Fan, Z, Kuzyk A, Nickels P C, Zhang T, Smith D M, Yurke B, Kuang W, Govorov A O, Liedl T 2013 Nat. Commun. 4 1Google Scholar
[125] Urban M J, Dutta P K, Wang P, Duan, X, Shen X, Ding B, Ke Y, Liu N 2016 J. Am. Chem. Soc. 138 5495Google Scholar
[126] Wang P, Meyer T A, Pan V, Dutta P K, Ke Y 2017 Chem 2 359Google Scholar
[127] Loretan M, Domljanovic I, Lakatos M, Re Y 2017 Ding B, Ke Y Materials 13 2185Google Scholar
[128] Fu J, Liu M, Liu Y, Woodbury N W, Yan H 2012 J. Am. Chem. Soc. 134 5516Google Scholar
[129] Liu N, Dai M, Saka S K, Yin P 2019 Nat. Chem. 11 1001Google Scholar
[130] Braun E, Eichen Y, Sivan U, Ben-Yoseph G 1998 Nature 391 775Google Scholar
[131] Liu J, Geng Y, Pound E, Gyawali S, Ashton J R, Hickey J, Woolley A T, Harb J N 2011 ACS Nano 5 2240Google Scholar
[132] Geng Y, Liu J, Pound E, Gyawali S, Harb J N, Woolley A T 2011 J. Mater. Chem. 21 12126Google Scholar
[133] Geng Y, Pearson A C, Gates E P, Uprety B, Davis R C, Harb J N, Woolley A T 2013 Langmuir 29 3482Google Scholar
[134] Pilo-Pais M, Goldberg S, Samano E, LaBean T H, Finkelstein G 2011 Nano Lett. 11 3489Google Scholar
[135] Helmi S, Ziegler C, Kauert D J, Seidel R 2014 Nano Lett. 14 6693Google Scholar
[136] Sun W, Boulais E, Hakobyan Y, Wang W L, Guan A, Bathe M, Yin P 2014 Science 346 6210Google Scholar
-
图 3 (a) T-Hg2+-T和C-Ag+-C结构示意图; (b) 顺铂与DNA相互作用形成的1, 2-链内加合物[18]; (c) 用于铂药物靶向递送的纳米抗体偶联DNA纳米平台示意图[34]
Fig. 3. (a) Illustration of T-Hg2+-T and C-Ag+-C complexes induced fluorescence quenching; (b) 1, 2-intrastrand adducts formed between cisplatin and DNA[18]; (c) illustration of a nanobody-conjugated DNA nanoplatform for targeted platinum drug delivery[34].
图 7 (a) 适体-Fen两亲分子的示意图以及在不同条件下的ApFAs的TEM图像[96]; (b) DOX/Sgc8-NFs-Fc的制备及其通过类芬顿反应在癌细胞中的自降解过程[97]
Fig. 7. (a) Schematic of aptamer-Fen amphiphilic molecules and TEM images of ApFAs at different conditions[96]; (b) preparation of DOX/Sgc8-NFs-Fc and its autodegradation process in cancer cells through Fenton-like reaction[97].
-
[1] 房丰洲 2020 中国机械工程 31 1009Google Scholar
Fang F 2020 Chinese Mech. Eng. 31 1009Google Scholar
[2] 李沫, 李倩, 张健 2016 太赫兹科学与电子信息学报 14 793Google Scholar
Li M, Li Q, Zhang J 2016 J. Terahertz Sci. Electron. Inf. Technol. 14 793Google Scholar
[3] Jiang D, England C G, Cai W 2016 J. Control. Release 239 27Google Scholar
[4] Dai Z, Leung H M, Lo P K 2017 Small 13 1602881Google Scholar
[5] Lippert B 2000 Coord. Chem. Rev. 200 487Google Scholar
[6] Morris D L 2014 Biomol. Concepts 5 397Google Scholar
[7] Liu J, Lu Y 2004 J. Am. Chem. Soc. 126 12298Google Scholar
[8] Cai W, Xie S, Zhang J, Tang D, Tang Y 2018 Biosens. Bioelectron. 117 3128Google Scholar
[9] Jia X, Li J, Han L, Ren J, Yang X, Wang E 2012 ACS Nano 6 3311Google Scholar
[10] Chen A, Ma S, Zhuo Y, Chai Y, Yuan R 2016 Anal. Chem. 88 3203Google Scholar
[11] Fu J, Zhang Z, Li G 2019 Chinese Chem. Let. 30 285Google Scholar
[12] Wagenknecht H A 2003 Angew. Chem. Int. Ed. 42 3204Google Scholar
[13] Wheate N J, Walker S, Craig G E, Oun R 2010 Dalton Trans. 39 8113Google Scholar
[14] Erxleben A 2017 CHIMIA 71 102Google Scholar
[15] Belmont P, Constan, J F, Demeunynck M 2001 Chem. Soc. Rev. 30 70Google Scholar
[16] Shamsi M H, Kraatz H B 2013 J. Inorg. Organomet. Polym. Mater. 23 4Google Scholar
[17] Sigel H 1993 Chem. Soc. Rev. 22 255Google Scholar
[18] Pages B J, Ang D L, Wright E P, Aldrich-Wright J R 2015 Dalton Trans. 44 3505Google Scholar
[19] Müller J 2010 Metallomics 2 318Google Scholar
[20] Kellett A, Molphy Z, Slator C, McKee V, Farrell N P 2019 Chem. Soc. Rev. 48 971Google Scholar
[21] Ono A, Togashi H 2004 Angew. Chem. 116 4400Google Scholar
[22] Jiang X, Wang H, Wang H, Yuan R, Chai Y 2016 Anal. Chem. 88 9243Google Scholar
[23] Zhang B, Guo L H 2012 Biosens. Bioelectron. 37 112Google Scholar
[24] Huang J, Gao X, Jia J, Kim J K, Li Z 2014 Anal. Chem. 86 3209Google Scholar
[25] Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamato I, Tanaka Y 2008 Chem. Commun. 39 4825Google Scholar
[26] Zhao C, Qu K, Song Y, Xu C, Ren J, Qu X 2010 Chem. Eur. J. 16 8147Google Scholar
[27] Zheng Y, Yang C, Yang F, Yang X 2014 Anal. Chem. 86 3849Google Scholar
[28] Park S, Sugiyama H 2010 Angew. Chem. Int. Ed. 49 3870Google Scholar
[29] Wang C, Li Y, Jia G, Liu Y, Lu S, Li C 2012 Chem. Commun. 48 6232Google Scholar
[30] Cepeda V, Fuertes M A, Castilla J, Alonso C, Quevedo C, Perez J M 2007 Anti-Cancer. Agents Med. Chem. 7 3Google Scholar
[31] Wang D, Lippard S J 2005 Nat. Rev. Drug Discovery 4 307Google Scholar
[32] Hartinger C G, Zorbas-Seifried S, Jakupec M A, Kynast B, Zorbas H, Keppler B K 2006 J. Inorg. Biochem. 100 891Google Scholar
[33] Komor A C, Barton J K 2013 Chem. Commun. 49 3617Google Scholar
[34] Wu T, Liu J, Liu M, Liu S, Zhao S. Tian R, Wei D, Liu Y, Zhao Y, Xiao H, Ding B 2019 Angew. Chem. In. Ed. 58 14224Google Scholar
[35] Chen Y. Xu J, Su J, Xiang Y, Yuan R, Chai Y 2012 Anal. Chem. 84 7750Google Scholar
[36] Wang H, Yuan Y, Zhuo Y, Chai Y, Yuan R 2016 Anal. Chem. 88 5797Google Scholar
[37] Li S K, Chen A Y, Chai Y Q, Yuan R, Zhuo Y 2016 Electrochim. Acta 212 767Google Scholar
[38] Kosman J, Juskowiak B 2011 Anal. Chim. Acta 707 7Google Scholar
[39] Yang X, Li T, Li B, Wang E 2010 Analyst 135 71Google Scholar
[40] Huang R, He L, Xia Y, Xu H, Liu C, Xie H, Wang S, Peng Li, Liu Y, Liu Y, He N, Li Z 2019 Small 15 1900735Google Scholar
[41] Golub E, Freeman R, Willner I 2011 Angew. Chem. 123 11914Google Scholar
[42] Chen Y, Phipps M L, Werner J H, Chakraborty S, Martinez J S 2018 Accounts Chem. Res. 51 2756Google Scholar
[43] Petty J T, Zheng J, Hud N V, Dickson R M 2004 J. Am. Chem. Soc. 126 5207Google Scholar
[44] Sharma J, Yeh H C, Yoo H, Werner J H, Martinez J S 2010 Chem. Commun. 46 3280Google Scholar
[45] Lan G Y, Chen W Y, Chang H T 2011 RSC Adv. 1 802Google Scholar
[46] Gwinn E G, O'Neill P, Guerrero A J, Bouwmeester D, Fygenson D K 2008 Adv. Mater. 20 279Google Scholar
[47] Feng L, Huang Z, Ren J, Qu X 2012 Nucleic Acids Res. 40 e122Google Scholar
[48] Liu Y Q, Zhang M, Yin B C, Ye B C 2012 Anal. Chem. 84 5165Google Scholar
[49] Liu J J, Song X R, Wang Y W, Zheng A X, Chen G N, Yang H H 2012 Anal. Chim. Acta 749 70Google Scholar
[50] Lyu D, Li J, Wang X, Guo W, Wang E 2018 Anal. Chem. 91 2050Google Scholar
[51] Thomas A C 2012 Chem. Commun. 48 6845Google Scholar
[52] Qing Z, He X, He D, Wang K, Xu F, Qing T, Yang X 2013 Angew. Chem. In. Ed. 52 9719Google Scholar
[53] Zhou F, Cui X, Shang A, Lian J, Yang L, Jin Y, Li B 2017 Microchim. Acta 184 773Google Scholar
[54] Ai J, Guo W, Li B, Li T, Li D, Wang E 2012 Talanta 88 450Google Scholar
[55] Fu Y, Zhao X, Zhang J, Li W 2014 J. Phys. Chem. C 118 18116Google Scholar
[56] Li W, Li W, Hu Y, Xia Y, Shen Q, Nie Z, Huang Y, Yao S 2013 Biosen. Bioelectron. 47 345Google Scholar
[57] Wu L L, Wang L Y, Xie Z J, Pan N, Peng C F 2016 Sens. Actuators, B 235 110Google Scholar
[58] Navani N K, Li Y 2006 Curr. Opin. Chem. Biol. 10 272Google Scholar
[59] Stoltenburg R, Reinemann C, Strehlitz B 2007 Biomol. Eng. 24 381Google Scholar
[60] Zhan S, Wu Y, Wang L, Zhan X, Zhou P 2016 Biosens Bioelectron. 86 353Google Scholar
[61] Dass C R, Choong P F, Khachigian L M 2008 Mol. Cancer Ther. 7 243Google Scholar
[62] McGhee C E, Loh K Y, Lu Y 2017 Curr. Opin. Biotechnol. 45 191Google Scholar
[63] Fan H, Zhang X, Lu Y 2017 Sci. China Chem. 60 591Google Scholar
[64] Li L, Xu S, Yan H, Li X, Yazd H S, Li X, Huang T, Cui C, Jiang J, Tan W 2020 Angew. Chem. Int. Ed. 59 2Google Scholar
[65] Pang X, Cui C, Wan S., Jiang Y, Zhang L, Xia L, Li L, Li X, Tan W 2018 Cancers 10 47Google Scholar
[66] Meng H M, Liu H, Kuai H, Peng R, Mo L, Zhang X B 2016 Chem. Soc. Rev. 45 2583Google Scholar
[67] Li S, Xu J, Wang S, Xia X, Chen L, Chen Z 2019 Chinese Chem. Lett. 30 1581Google Scholar
[68] Zhang D, Yin L, Meng Z, Yu A, Guo L, Wang H 2014 Anal. Chim. Acta 812 161Google Scholar
[69] Lei Y M, Huang W X, Zhao M, Chai Y Q, Yuan R, Zhuo Y 2015 Anal. Chem. 87 7787
[70] 陈俊俊, 李称, 徐斐, 曹慧, 叶泰, 于劲松, 袁敏 2018 工业微生物 3 11Google Scholar
Chen J J, Li C, Xu F, Cao H, Ye T, Y u, J S, Yuan M 2018 Industrial Microorganisms 3 11Google Scholar
[71] Williamson J R 1994 Annu. Rev. Bioph. Biom. 23 703Google Scholar
[72] Chung C H, Kim J H, Jung J, Chung B H 2013 Biosen. Bioelectron. 41 827Google Scholar
[73] Peng Y, Li Y, Li L, Zhu J J 2018 J. Hazard. Mater. 359 121Google Scholar
[74] Breaker R R, Joyce G F 1994 Chem. Biol. 1 223Google Scholar
[75] Ihms H E, Lu Y 2012 Humana Press 848 297Google Scholar
[76] Liang W B, Zhuo Y, Zheng Y N, Xiong C Y, Chai Y Q, Yuan R 2017 ACS Appl. Mater. Interfaces 9 39812Google Scholar
[77] Hong C, Kim D M, Baek A, Chung H, Jung W, Kim D E 2015 Chem. Commun. 51 5641Google Scholar
[78] Chen J, Zuehlke A, Deng B, Peng H, Hou X, Zhang H 2017 Anal. Chem. 89 12888Google Scholar
[79] Fan H, Zhao Z, Yan G, Zhang X, Yang C, Meng H, Chen Z, Liu H, Tan W 2015 Angew. Chem. 127 4883Google Scholar
[80] Wang H, Wang H, Wu Q, Liang M, Liu X, Wang F 2019 Chem. Sci. 10 9597Google Scholar
[81] Khakshoor O, Kool E T 2011 Chem. Commun. 47 7018Google Scholar
[82] Pinheiro V B, Holliger P 2012 Curr. Opin. Chem. Biol. 16 245Google Scholar
[83] Nielsen P E, Haaima G 1997 Chem. Soc. Rev. 26 73Google Scholar
[84] Corradini R, Sforza S, Tedeschi T, Totsingan F, Manicardi A, Marchelli R 2011 Curr. Top. Med. Chem. 11 1535Google Scholar
[85] Whittell G R, Manners I 2007 Adv. Mater. 19 3439Google Scholar
[86] James H R 2012 Chem. Commun. 48 12165Google Scholar
[87] Clever G H, Shionoya M 2010 Coord. Chem. Rev. 254 2391Google Scholar
[88] Johannsen S, Megger N, Böhme D, Sige R K, Mn F, Manicard Nat. Chem. 2 229
[89] Zhu T, Wu Q, Chen P, Ding Y 2009 J. Organomet. Chem. 694 21Google Scholar
[90] Li D, Song S, Fan C 2010 Accounts Chem. Res. 43 631Google Scholar
[91] Abdullah R, Xie S, Wang R, Jin C, Du Y, Fu T, Li J, Zhang L, Tan W 2018 Anal. Chem. 91 2074Google Scholar
[92] Wang R, Zhu G, Mei L, Xie Y, Ma H, Ye M, Qing F L, Tan W 2014 J. Am. Chem. Soc. 136 2731Google Scholar
[93] Jin C, Liu X, Bai H, Wang R, Tan J, Peng X, Tan W 2017 ACS Nano 11 12087Google Scholar
[94] Jin C, He J, Zou J, Xuan W, Fu T, Wang R, Tan W 2019 Nat. Commun. 10 2704Google Scholar
[95] Xie S, Qiu L, Cui L, Liu H, Sun Y, Liang H, Ding D, He L, Liu H, Zhang J, Chen, Z. Zhang X, Tan W 2017 Chem 3 1021Google Scholar
[96] Tan J, Li H, Hu X, Abdullah R, Xie S, Zhang L, Zhao M, Luo Q, Li Y, Sun Z, Yuan Q, Tan W 2019 Chem 5 1775Google Scholar
[97] Zhang L, Abdullah R, H X, Bai H, Fan H, He L, Liang H, Zou J, Liu Y, Zhang, X. Tan W 2019 J. Am. Chem. Soc. 141 4282Google Scholar
[98] Kallenbach N R, Ma R I, Seeman N C 1983 Nature 305 829Google Scholar
[99] Seeman N C 2003 Nature 421 427Google Scholar
[100] Aldaye F A, Palmer A L, Sleiman H F 2008 Science 321 1795Google Scholar
[101] Seeman N C 2010 Annu. Rev. Biochem. 79 6Google Scholar
[102] Wang Z G, Ding B 2014 Accounts Chem. Res. 47 1654Google Scholar
[103] Veneziano R, Moyer T J, Stone M B, Wamhoff E C, Read B J, Mukherjee S, Shepherd T R, Das J, Schief W R, Irvine D J, Bathe M 2020 Nat. Nanotechnol. 15 716Google Scholar
[104] He X, Dong L, Wang W, Lin N, Mi Y 2013 Chem. Commun. 49 2906Google Scholar
[105] Liu Y, Chen Q, Liu J, Yang X, Guo Q, Li L, Liu W, Wang K 2017 Anal. Chem. 89 3590Google Scholar
[106] Ke Y, Sharma J, Liu M, Jahn K, Liu Y, Yan H 2009 Nano Lett. 9 2445Google Scholar
[107] Sadowski J P, Calvert C R, Zhang D Y, Pierce N A, Yin P 2014 ACS Nano 8 3251Google Scholar
[108] Mou Q, Ma Y, Pan G, Xue B, Yan D, Zhang C, Zhu X 2017 Angew. Chem. 129 12702Google Scholar
[109] Shiu S C C, Fraser L A, Ding Y, Tanner J A 2018 Molecules 23 1695Google Scholar
[110] Um S H, Lee J B, Park N, Kwon, S Y, Umbach C C, Luo D 2006 Nat. Mater. 5 797Google Scholar
[111] Shahbazi M A, Baulethk N, Kwon, S Y, Umbach C C Adv. Therap. 1 1800042
[112] He Y, Tian Y, Chen Y, Deng Z, Ribbe A E, Mao C 2005 Angew. Chem. Int. Ed. 44 6694Google Scholar
[113] He Y, Chen Y, Liu H, Ribbe A E, Mao C 2005 J. Am. Chem. Soc. 127 12202Google Scholar
[114] Douglas S M, Marblestone A H, Teerapittayanon S, Vazquez A, Church G M, Shih W M 2009 Nucleic Acids Res. 37 5001Google Scholar
[115] Bila H, Kurisinkal E E, Bastings M M 2019 Biomater. Sci. 7 532Google Scholar
[116] Rothemund P W K 2006 Nature 440 297Google Scholar
[117] Veneziano R, Ratanalert S, Zhang K, Zhang F, Yan H, Chiu W, Bathe M 2016 Science 352 1534Google Scholar
[118] Schreiber R, Do J, Roller E M, Zhang T, Sch, ler, V J, Nickels P C, Feldmann J, Liedl T 2014 Nat. Nanotechnol. 9 74Google Scholar
[119] Zhan P, Wen T, Wang Z G, He Y, Shi J, Wang T. Liu X, Lu G, Ding B 2018 Angew. Chem. Int. Ed. 57 2846Google Scholar
[120] Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R N, Bokor J 2010 J. Am. Chem. Soc. 132 3248Google Scholar
[121] Tian Y, Wang T, Liu W, Xin H L, Li H, Ke Y, M. Shih W, Gang O 2015 Nat. Nanotechnol. 10 637Google Scholar
[122] Jia S, Wang J, Xie M, Sun J, Liu H, Zhang Y, Chao J, Li J, Wang L, Lin J, Gothelf K V, Fan C 2019 Nat. Commun. 10 5597Google Scholar
[123] Liu X, Zhang F, Jing X, Pan M, Liu P, Li W, Zhu B, Li J, Chen H, Wang L, Lin J, Liu Y, Zhao D, Yan H, Fan C 2018 Nature 559 593Google Scholar
[124] Schreiber R, Luong N, Fan, Z, Kuzyk A, Nickels P C, Zhang T, Smith D M, Yurke B, Kuang W, Govorov A O, Liedl T 2013 Nat. Commun. 4 1Google Scholar
[125] Urban M J, Dutta P K, Wang P, Duan, X, Shen X, Ding B, Ke Y, Liu N 2016 J. Am. Chem. Soc. 138 5495Google Scholar
[126] Wang P, Meyer T A, Pan V, Dutta P K, Ke Y 2017 Chem 2 359Google Scholar
[127] Loretan M, Domljanovic I, Lakatos M, Re Y 2017 Ding B, Ke Y Materials 13 2185Google Scholar
[128] Fu J, Liu M, Liu Y, Woodbury N W, Yan H 2012 J. Am. Chem. Soc. 134 5516Google Scholar
[129] Liu N, Dai M, Saka S K, Yin P 2019 Nat. Chem. 11 1001Google Scholar
[130] Braun E, Eichen Y, Sivan U, Ben-Yoseph G 1998 Nature 391 775Google Scholar
[131] Liu J, Geng Y, Pound E, Gyawali S, Ashton J R, Hickey J, Woolley A T, Harb J N 2011 ACS Nano 5 2240Google Scholar
[132] Geng Y, Liu J, Pound E, Gyawali S, Harb J N, Woolley A T 2011 J. Mater. Chem. 21 12126Google Scholar
[133] Geng Y, Pearson A C, Gates E P, Uprety B, Davis R C, Harb J N, Woolley A T 2013 Langmuir 29 3482Google Scholar
[134] Pilo-Pais M, Goldberg S, Samano E, LaBean T H, Finkelstein G 2011 Nano Lett. 11 3489Google Scholar
[135] Helmi S, Ziegler C, Kauert D J, Seidel R 2014 Nano Lett. 14 6693Google Scholar
[136] Sun W, Boulais E, Hakobyan Y, Wang W L, Guan A, Bathe M, Yin P 2014 Science 346 6210Google Scholar
计量
- 文章访问数: 11490
- PDF下载量: 250
- 被引次数: 0