搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增材制造宽温区La (Fe,Si)13基梯度合金的磁热性能研究

谢珑珑 秦亚洲 孙佳怡 乔凯明 刘剑 张虎

引用本文:
Citation:

增材制造宽温区La (Fe,Si)13基梯度合金的磁热性能研究

谢珑珑, 秦亚洲, 孙佳怡, 乔凯明, 刘剑, 张虎

Study on magnetocaloric properties of La(Fe, Si)13-based gradient alloys with wide temperature range by additive manufacturing*

Xie Long-Long, Qin Ya-Zhou, Sun Jia-Yi, Qiao Kai-Ming, Liu Jian, Zhang Hu
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 磁制冷技术具有绿色环保和节能高效等优点,被认为是有望取代气体压缩制冷技术的新一代制冷技术。但目前磁制冷材料往往相变温区过窄(≤10 K),需多个成分的材料叠加才能满足实际的制冷温跨。本研究选择典型的La (Fe,Si)13基磁制冷材料,创新采用梯度激光粉末床熔融技术,3D打印出水平成分梯度的La0.70Ce0.30Fe11.65-xMnxSi1.35(Mn含量从0至0.64连续变化)合金。系统表征其显微结构、磁学性能及磁热效应可知,该技术可实现成分沿粉末床平面的可控梯度分布与高通量制备,从而实现了该梯度合金居里温度从134至174 K宽温区的连续变化。随Mn含量增加,合金相变从弱一级相变逐渐变为二级相变,磁熵变曲线峰型从“尖而高”变为“宽而平”,半高宽温区扩大至83.3 K,使得梯度合金始终保持较高的制冷能力RC (~130 J kg-1,3 T)。该研究通过梯度增材制造突破传统材料制备与性能瓶颈,为磁制冷材料高通量制备与性能优化提供全新技术路径。
    Magnetic refrigeration technology, featuring environmental friendliness, energy efficiency and high performance, is recognized as a next-generation refrigeration technology with the potential to replace gas compression refrigeration technology. However, current magnetic refrigeration materials typically exhibit an excessively narrow phase transition temperature range (≤ 10 K), necessitating the stacking of materials with multiple compositions to meet the practical refrigeration temperature span. In this study, the typical La(Fe, Si)13-based magnetic refrigeration material was selected, and an innovative gradient laser powder bed fusion technology was adopted to 3D-print La0.70Ce0.30Fe11.65-xMnxSi1.35 alloys with horizontal compositional gradients (where the Mn content varies continuously from 0 to 0.64). Systematic characterization of their microstructure, magnetic properties, and magnetocaloric effect indicates that this technology enables controllable gradient distribution of compositions along the powder bed plane and high-throughput preparation, thereby achieving a continuous variation of the Curie temperature of the gradient alloy over a wide temperature range from 134 K to 174 K. With the increase of Mn content, the phase transition of the alloy gradually transforms from a weak first-order phase transition to a second-order phase transition, and the peak shape of the magnetic entropy change curve shifts from "sharp and high" to "broad and flat". The full width at half maximum of the temperature range expands to 83.3 K, allowing the gradient alloy to consistently maintain a high refrigeration capacity (RC ~130 J kg-1, 3 T). This study breaks through the bottlenecks of traditional material preparation and performance via gradient additive manufacturing, providing a novel technical pathway for the high-throughput preparation and performance optimization of magnetic refrigeration materials.
  • [1]

    Xie L L, Liang C G, Qin Y Z, Zhou H, Yu Z Y, Chen H D, Naeem M Z, Qiao K M, Wen Y J, Zhang B C, Wang G F, Li X, Liu J, Franco V, Chu K, Yi M, Zhang H 2024 Adv. Func. Mater. 35 2414441

    [2]

    Zhang H, Xing C F, Long K W, Xiao Y N, Tao K, Wang L C, Long Y 2018 Acta Phys. Sin. 67 207501 (in Chinese) [张虎, 邢成芬, 龙克文, 肖亚宁 陶坤, 王利晨, 龙毅 2018 物理学报 67 207501]

    [3]

    Zhou H, Tao K, Chen B, Chen H D, Qiao K M, Yu Z Y, Cong J Z, Huang R J, Taskaev S V, Zhang H 2022 Acta Mater. 229 117830

    [4]

    Chmielus M, Zhang X X, Witherspoon C, Dunand D C, Müllner P 2009 Nature Mater. 8 863

    [5]

    Zhang H, Li Y W, Liu E K, Tao K, Wu M L, Wang Y X, Zhou H B, Xue Y J, Cheng C, Yan T, Long K W, Long Y 2017 Mater. Design 114 531

    [6]

    Guo W H, Miao X F, Cui J Y, Torii S K, Qian F J, Bai Y Q, Kou Z D, Zha J J, Shao Y Y, Zhang Y J, Xu F, Caron L 2024 Acta Mater. 263 119530

    [7]

    Imaizumi K, Fujita A, Suzuki A, Kobashi M, Ozaki K 2022 Acta Mater. 227 117726

    [8]

    Beckmann B, Taubel A, Gottschall T, Pfeuffer L, Koch D, Staab F, Bruder E, Scheibel F, Skokov K P, Gutfleisch O 2025 Acta Mater. 282 120460

    [9]

    Çakır A, Righi L, Albertini F, Acet M, Farle M 2015 Acta Mater. 99 140

    [10]

    Fries M, Pfeuffer L, Bruder E, Gottschall T, Ener S, Diop L V B, Gröb T, Skokov K P, Gutfleisch O 2017 Acta Mater. 132 222

    [11]

    Dan’kov S Y, Tishin A M, Pecharsky V K, Gschneidner K A 1998 Phys. Review B 57 3478

    [12]

    Zhang H, Sun Y J, Niu E, Hu F X, Sun J R, Shen B G 2014 Appl. Phys. Lett. 104 062407

    [13]

    Zhang H, Shen B G, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R, Long Y 2012 J. Appl. Phys. 111 07A909

    [14]

    Miao X F, Wang C X, Liao T W, Ju S H, Zha J J, Wang W Y, Liu J, Zhang Y J, Ren Q Y, Xu F, Caron L 2023 Acta Mater. 242 118453

    [15]

    Kang K H, Lee A Y, Ahn H, Lee W, Kim J W 2025 J. Magn. Magn. Mater. 614 172753

    [16]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nature Mater. 11 620

    [17]

    Gottschall T, Gràcia-Condal A, Fries M, Taubel A, Pfeuffer L, Mañosa L, Planes A, Skokov K P, Gutfleisch O 2018 Nature Mater. 17 929

    [18]

    Qiao K M, Cui Z, Hao X W, Zhao Q, Xu Y X, Wang D K, Liu J Y, Wang D D, Xia Y G, Yin W, Hao J Z, He L H, Romero-Muñiz C, Law J Y, Franco V, Ren Q Y, Zhang H 2025 Acta Mater. 297 121344

    [19]

    Li Y, Zeng Q Q, Wei Z Y, Liu E K, Han X L, Du Z W, Li L W, Xi X K, Wang W H, Wang S G, Wu G H 2019 Acta Mater. 174 289

    [20]

    Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese) [郑新奇, 沈俊, 胡凤霞, 孙继荣, 沈保根 2016 物理学报 65 217502]

    [21]

    Onuike B, Heer B, Bandyopadhyay A 2018 Addit. Manuf. 21 133

    [22]

    Wen Y J, Wu X K, Huang A K, Narayan R L, Wang P, Zhang L J, Zhang B C, Ramamurty U, Qu X H 2024 Acta Mater. 264 119572

    [23]

    Wen Y J, Zhang B C, Narayan R L, Wang P, Song X, Zhao H, Ramamurty U, Qu X H 2021 Addit. Manuf. 40 101926

    [24]

    Wen Y J, Gao Y, Narayan R L, Cai W, Wang P, Wei X D, Zhang B C, Ramamurty U, Qu X H 2025 Int. J. Plasticity 189 104342

    [25]

    Liu J, He C, Zhang M X, Yan A R 2016 Acta Materialia 118 44

    [26]

    Shao Y Y, Liu J, Zhang M X, Yan A R, Skokov K P, Karpenkov D Y, Gutfleisch O 2017 Acta Mater. 125 506

    [27]

    Sun Y, Lv W J, Liang Y, Gao Y, Cui W J, Yan Y J, Zhao W Y, Zhang Q J, Sang X H 2023 Scripta Mater. 223 115068

    [28]

    Krautz M, Skokov K, Gottschall T, Teixeira C S, Waske A, Liu J, Schultz L, Gutfleisch O 2014 J. Alloys Compd. 598 27

    [29]

    Eggert B, Lill J, Günzing D, Terwey A, Radulov I A, Wilhelm F, Rogalev A, Rovezzi M, Skokov K, Ollefs K, Gutfleisch O, Gruner M E, Wende H 2025 J. Alloys Compd 1031 180586

    [30]

    Zhang X, Wang K, Huang K L, Yao Q R, Lu Z, Long Q X, Deng J Q, Wang J, Zhou H Y 2024 J.Magn. Magn Mater 607 172379

    [31]

    Miao L Y, Lu X, Wei Z Y, Zhang Y F, Zhang Y X, Liu J 2023 Acta Mater. 245 118635

    [32]

    Lovell E, Pereira A M, Caplin A D, Lyubina J, Cohen L F 2014 Adv. Energy Mater. 5 1401639

    [33]

    Lai J W, Sepehri-Amin H, Tang X, Li J, Matsushita Y, Ohkubo T, Saito A T, Hono K 2021 Acta Mater. 220 117286

    [34]

    Liu J, Krautz M, Skokov K, Woodcock T G, Gutfleisch O 2011 Acta Mater. 59 3602

    [35]

    Yang J J, Zhao J L, Xu L, Zhang H G, Yue M, Liu D M, Jiang Y J 2018 Acta Phys. Sin. 67 077501 (in Chinese) [杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚 2018 物理学报 67 077501]

  • [1] 方俊, 赵艳红, 高兴誉, 张其黎, 王越超, 孙博, 刘海风, 宋海峰. 金属铅的宽区多相物态方程. 物理学报, doi: 10.7498/aps.74.20250569
    [2] 李国璇, 范海龙. 旋转与强剪切流协同作用对稀合金激光增材制造中界面不稳定性的影响. 物理学报, doi: 10.7498/aps.74.20250829
    [3] 李瑞, 沈俊, 张志鹏, 李振兴, 莫兆军, 高新强, 海鹏, 付琪. 基于不同流动时间占比的紧凑式室温磁制冷系统实验研究. 物理学报, doi: 10.7498/aps.73.20231066
    [4] 熊沛雨, 倪壮, 林泽丰, 柏欣博, 刘天想, 张翔宇, 袁洁, 王旭, 石兢, 金魁. 面向宽温域功能器件的连续组分外延铁电薄膜. 物理学报, doi: 10.7498/aps.72.20230154
    [5] 李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊. 50 mK多级绝热去磁制冷机的实验研究. 物理学报, doi: 10.7498/aps.72.20231102
    [6] 彭嘉欣, 唐本镇, 陈棋鑫, 李冬梅, 郭小龙, 夏雷, 余鹏. 非晶态Gd45Ni30Al15Co10合金的制备与磁热性能. 物理学报, doi: 10.7498/aps.70.20211530
    [7] 王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远. 用于亚开温区的极低温绝热去磁制冷机. 物理学报, doi: 10.7498/aps.70.20202237
    [8] 苏文霞, 陆海鸣, 曾子芮, 张一飞, 刘剑, 徐坤, 王敦辉, 都有为. 磁制冷材料LaFe11.5Si1.5基合金成分与磁相变温度关系的高通量计算. 物理学报, doi: 10.7498/aps.70.20211085
    [9] 刘国强, 柯亚娇, 张孔斌, 何雄, 罗丰, 何斌, 孙志刚. 全固态磁制冷系统物理模型的研究进展. 物理学报, doi: 10.7498/aps.68.20191139
    [10] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒. 宽温域跨室温磁斯格明子材料的发现及器件研究. 物理学报, doi: 10.7498/aps.67.20180419
    [11] 李振兴, 李珂, 沈俊, 戴巍, 高新强, 郭小惠, 公茂琼. 室温磁制冷技术的研究进展. 物理学报, doi: 10.7498/aps.66.110701
    [12] 周祥曼, 张海鸥, 王桂兰, 柏兴旺. 电弧增材成形中熔积层表面形貌对电弧形态影响的仿真. 物理学报, doi: 10.7498/aps.65.038103
    [13] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟. 物理学报, doi: 10.7498/aps.64.210201
    [14] 陈湘, 陈云贵, 唐永柏, 肖定全, 李道华. 一级相变磁制冷材料的基础问题探究. 物理学报, doi: 10.7498/aps.63.147502
    [15] 沈满德, 任欢欢. 一种宽温双光谱红外搜索跟踪系统的设计. 物理学报, doi: 10.7498/aps.62.090702
    [16] 鲁东, 金冬月, 张万荣, 张瑜洁, 付强, 胡瑞心, 高栋, 张卿远, 霍文娟, 周孟龙, 邵翔鹏. 新型宽温区高热稳定性微波功率SiGe 异质结双极晶体管. 物理学报, doi: 10.7498/aps.62.104401
    [17] 王永田, 刘宗德, 易军, 薛志勇. Gd基非晶与Gd纳米晶复合结构的磁制冷效应. 物理学报, doi: 10.7498/aps.61.056102
    [18] 钱忠华, 封国林, 龚志强. 中国夏冬两季最概然温度分布及其增温趋势减缓. 物理学报, doi: 10.7498/aps.59.7498
    [19] 姚关华, 徐至展, 屈卫星. 强场自电离中自发辐射谱的功率增宽. 物理学报, doi: 10.7498/aps.39.30
    [20] 王永昌, E. JANNITTI, G. TONDELLO. 对等离子体中谱线的斯塔克增宽的真空紫外光谱观测. 物理学报, doi: 10.7498/aps.34.1049
计量
  • 文章访问数:  52
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-01

/

返回文章
返回