搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硒直接掺杂获得宽温区高性能n型Bi2Te3基热电材料

刘志愿 马俊杰 曾照鹏 马妮 巴倩 张娣 陶喆 夏爱林

引用本文:
Citation:

硒直接掺杂获得宽温区高性能n型Bi2Te3基热电材料

刘志愿, 马俊杰, 曾照鹏, 马妮, 巴倩, 张娣, 陶喆, 夏爱林

High-Performance n-type Bi2Te3-based thermoelectric materials with wide temperature range obtained through direct selenium doping

LIU Zhiyuan, MA Junjie, ZENG Zhaopeng, MA Ni, BA Qian, ZHANG Di, TAO Zhe, XIA Ailin
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • Bi2Te3基化合物因其优异的电输运性能和较低热导率在近室温热电材料中备受关注,研究表明固溶和掺杂是优化Bi2Te3基材料性能的有效途径。目前,硒(Se)作为掺杂剂的n型Bi2Te3-xSex基材料已有研究报道,但Te位Se直接掺杂对其缺陷结构、微观组织及能带间隙的调控机理尚未得到系统研究。本文系统研究了Te位Se直接掺杂对三元n型Bi2Te3-xSex基化合物的缺陷结构、微结构及带隙的调控行为及其对热电输运性能的影响规律。Se掺杂Te位点形成n型施主缺陷SeTe· ,抑制Bi'Te反位缺陷并促使Bi回归本征位,同时产生Te间隙原子(Tei×)和空位缺陷(VTe··),优化载流子浓度和迁移率,有效提高材料的电性能。此外,过饱和Te以间隙原子形式扩散析出形成第二相。Se掺杂通过点缺陷引发的质量与应变场波动增强声子散射,显著降低晶格热导率。随x增加,样品带隙增加,本征激发引诱的双极效应所导致的性能恶化被显著抑制。结果,Bi2Te2.7Se0.3样品在300-500 K温区获得最大平均zT值(zTave)为0.73。退火后因样品微结构优化,Bi2Te2.4Se0.6样品功率因子提高,热导率下降,420 K时获得最大zT值为0.81,300-500 K温区zTave为0.76。这表明Se直接掺杂可以拓宽最佳zT值对应温区,退火工艺可进一步优化其热电性能。该研究为开发宽温区高性能近室温热电材料提供了研究思路。
    Bi2Te3-based compounds have garnered significant attention for near-room-temperature thermoelectric applications due to their excellent electrical transport properties and low thermal conductivity. Solid solutions and doping are effective methods for optimizing the performance of Bi2Te3-based materials. Currently, n-type Bi2Te3-xSex materials using selenium (Se) as a dopant have been reported. However, the regulatory mechanisms of direct Se doping at Te sites on their defect structure, microstructure, and bandgap have not yet been systematically investigated. This work systematically investigates the regulatory behavior of direct Se doping at Te sites on the defect structure, microstructure, and bandgap of ternary n-type Bi2Te3-xSex compounds, and its impact on thermoelectric transport properties. Se substitution at Te sites forms n-type donor defects SeTe·, suppresses the formation of Bi'Te antisite defects, and facilitates the return of Bi atoms to their intrinsic lattice sites. Concurrently, it introduces Te interstitial atoms (Tei×) and Te vacancies (VTe··), optimizing both carrier concentration and mobility, thereby effectively enhancing the electrical performance. Furthermore, supersaturated Te diffuses out as interstitial atoms and precipitates to form secondary phases. Se doping enhances phonon scattering via mass and strain field fluctuations induced by point defects, leading to a significant reduction in lattice thermal conductivity. As x increases, the bandgap of the samples is widened, resulting in significant suppression of the performance degradation caused by the intrinsic-excitation-induced bipolar effect. Consequently, the Bi2Te2.7Se0.3 sample achieved amaximum average zT (zTave) value of 0.73 within the 300-500 K temperature range. After annealing, the optimization of the sample's microstructure led to an enhanced power factor and reduced thermal conductivity in the Bi2Te2.4Se0.6 sample, achieving a maximum zT value of 0.81 at 420 K and and a zTave value of 0.76 in the 300-500 K temperature range. These results demonstrate that direct Se doping at Te sites can broaden the temperature range corresponding to the optimal zT values, and that the annealing process can further optimize the thermoelectric performance. This study provides significant insights for developing high-performance near-room-temperature thermoelectric materials applicable to broad operating temperatures.
  • [1]

    Bell L E 2008 Science 321 1457

    [2]

    Wang H, Pan Z Y 2023 Mater Lab 2 220053

    [3]

    Lu W B, Luo W, Fan Y C, Ding Q, Jiang W 2024 Adv Ceram 45 177(in Chinese)[鲁文 彬,罗维,范宇驰,丁奇,江莞2024现代技术陶瓷45 177]

    [4]

    Liu Z Y, Wang Y G, Yang T, Ma Z J, Zhang H Y, Li H L, Xia A L 2023 J Adv Ceram 12 539

    [5]

    Liu Z Y, Zhu J L, Tong X, Niu S, Zhao W Y 2020 J Adv Ceram 9 647

    [6]

    Zhou H Y, Liu H, Qian G P, Yu H N, Gong X B, Li X B, Zheng J L. 2022 Micromachines 13 233

    [7]

    Wang G, Cagin T 2007 Phys Rev B 76 075201

    [8]

    Li L, Wei P, Yang M J, Zhu W T, Nie X L, Zhao W Y, Zhang Q J 2023 Sci China Mater 66 3651

    [9]

    Lou L, Yang J, Zhu Y, Liang H, Zhang Y, Feng J, He J, Ge Z, Zhao L 2022 Adv Sci 9 2203250

    [10]

    Guo X, Zhang C, Liu Z, He P, Szczęsny R, Jin F, Liu W, Gregory D 2021 ACS Appl. Mater. Interfaces 13 13400

    [11]

    An J, Han M, Kim S 2019 J Solid State Chem 270 407

    [12]

    Guan X, Liu Z, Ma N, Li Z, Liu J, Zhang H, Li H, Ba Q, Ma J, Jin C, Xia A 2025 Acta Metall Sin-Engl 38 849

    [13]

    Li R Y, Luo T T, Li M, Chen S, Yan Y G, Wu J S, Su X L, Zhang Q J, Tang X F 2024 Acta Phys Sin 73 097101(in Chinese)[李睿英,罗婷婷,李貌,陈硕,鄢永高,吴劲松,苏 贤礼,张清杰,唐新峰2024物理学报73 097101]

    [14]

    Zhu B, Wang W, Cui J, He J 2021 Small 17 2101328

    [15]

    Wu F, He Q, Tang M, Song H 2018 Int J Mod Phys B 32 1850123

    [16]

    Li D, Qin X Y, Dou Y C, Li X Y, Sun R R, Wang Q Q, Li L L, Xin H X, Wang N, Wang N N, Song C J, Liu Y F, Zhang J 2012 Scripta Mater 67 161

    [17]

    Pan Y, Wei T R, Wu C F, Li J F 2015 J Mater Chem C 3 10583

    [18]

    Li D, Qin X Y, Zhang J, Song C J, Liu Y, Wang L, Xin H, Wang Z 2015 RSC Adv 5 43717

    [19]

    Zhang Q, Xu L, Wang L, Jiang W 2014 J Inorg Mater 29 1139(in Chinese)[张骐昊, 徐磊磊,王连军,江莞2014无机材料学报29 1139]

    [20]

    Vinoth S, Vinoth S, Roy V A L, Thilakan P 2024 J Cryst Growth 625 127442

    [21]

    Kawajiri Y, Tanusilp S-A, KumagaiM, IshimaruM, Ohishi Y, Tanaka J, Kurosaki K 2021 ACS Appl. Mater. Interfaces 4 11819

    [22]

    Su D, Cheng J, Li S, Zhang S, Lyu T, Zhang C, Li J, Liu F, Hu L 2023 J Mater Sci Technol 138 50

    [23]

    Puneet P, Podila R, Karakaya M, Zhu S, He J, Tritt T, Dresselhaus M, Rao A 2013 Sci Rep 2013 3 1

    [24]

    Sharma K, Kumar A, Goyal N, Lal M 2013 AIP Conf Proc 1536 603

    [25]

    Kim C, Kim C E, Baek J Y, Kim D, Kim J, Ahn J, Hyeon Lopez D, Kim T, Kim H 2016 Ind Eng Chem Res 55 5623

    [26]

    Zhang Q, Ai X, Wang L, Chang Y, Luo W, Jiang W, Chen L 2015 Adv Function Mater 25 966

    [27]

    Ren Z, Taskin A A, Sasaki S, Segawa K, Ando Y 2012 Phys. Rev. B 85 1903

    [28]

    Zhu T J, Hu L P, Zhao X B, He J 2016 Adv Sci 3 1600004

    [29]

    Li Z, Xiao C, Zhu H, Xie Y 2016 J. Am. Chem. Soc 138 14810

    [30]

    Li Z, Deng T T, Qiu P F, Ming C, Gao Z Q, Chen L D, Shi X 2025 Nat Commun 16 5190

    [31]

    Zhao L D, Zhang B P, Liu W S, Zhang H, Li J 2009 J Alloy Compd 467 91

    [32]

    Wang S, Tan G, Xie W, Gang Z, Han L, Yang J, Tang X 2012 J Mater Chem A 22 20943

    [33]

    Hu L, Guo Y, Li J, Ao W, Liu F 2018 Mater Res Bull 99 377

    [34]

    Scanlon D O, King P D C, Singh R P, de la Torre A, Walker S M, Balakrishnan G, Baumberger F, Catlow C R A 2012 Adv Mater 24 2154

    [35]

    Horák J, Stary Z, Lošt'ák P, Pancí J 1990 J Phys Chem Solids 51 1353

    [36]

    Zhao A Q, Liu H, Sun T, Lang Y D, Chen C C, Pan L, Wang Y F 2024 J Alloy Compd 982 173806

    [37]

    Fan C, Sakamoto K, Krüger P 2024 Appl Sur Sci 643 158699

    [38]

    Snyder G J, Toberer E S 2008 Nat Mater 7 105

    [39]

    Ma S F, Li C C, Cui W J, Sang X H, Wei P, Zhu W T, Nie X L, Sun F H, Zhao W Y, Zhang Q J 2021 Sci China Mater 64 2835

    [40]

    Cutler M, Leavy J F, Fitzpatrick R L 1964 Phys Rev 133 1143

    [41]

    Kim H S, Gibbs Z M, Tang Y, Wang H, Snyder G 2015 Appl Phys Lett 3 041506

    [42]

    Zhu J L, Liu Z Y, Tong X, Xia A L, Xu D, Lei Y, Yu J, Tang D G, Ruan X F, Zhao W Y 2021 ACS Appl. Mater. Interfaces 13 23894

    [43]

    Callaway J, Von Baeyer H. C 1960 Phys Rev 120 1149

    [44]

    Nolas G S, Sharp J, Goldsmid J. 2013 Springer Science&Business Media p15

    [45]

    Sharma V, Singh S P, Mudahar G S, Kulwant S 2012 New J Glass Ceram 2 128

  • [1] 谢珑珑, 秦亚洲, 孙佳怡, 乔凯明, 刘剑, 张虎. 增材制造宽温区La(Fe, Si)13基梯度合金的磁热性能. 物理学报, doi: 10.7498/aps.74.20251317
    [2] 刘榕涛, 王晨阳, 黄嘉勉, 罗鹏飞, 刘欣, 叶松, 董子睿, 张继业, 骆军. Sc掺杂Ti1–xNiSb半哈斯勒合金的制备与热电性能. 物理学报, doi: 10.7498/aps.72.20230035
    [3] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能. 物理学报, doi: 10.7498/aps.71.20220179
    [4] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能. 物理学报, doi: 10.7498/aps.71.20220584
    [5] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能. 物理学报, doi: 10.7498/aps.70.20202094
    [6] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, doi: 10.7498/aps.69.20200861
    [7] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, doi: 10.7498/aps.69.20191561
    [8] 黄平, 游理, 梁星, 张继业, 骆军. Se替代Te对BiCuTeO电热输运性能的影响. 物理学报, doi: 10.7498/aps.68.20181850
    [9] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, doi: 10.7498/aps.68.20190247
    [10] 陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清. Ga掺杂对Cu3SbSe4热电性能的影响. 物理学报, doi: 10.7498/aps.66.167201
    [11] 张飞鹏, 张静文, 张久兴, 杨新宇, 路清梅, 张忻. Sr掺杂对CaMnO3基氧化物电子性质及热电输运性能的影响. 物理学报, doi: 10.7498/aps.66.247202
    [12] 余波. Ag掺杂对p型Pb0.5Sn0.5Te化合物热电性能的影响规律. 物理学报, doi: 10.7498/aps.61.217104
    [13] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, doi: 10.7498/aps.61.086101
    [14] 刘剑, 王春雷, 苏文斌, 王洪超, 张家良, 梅良模. Nb掺杂对还原性烧结的TiO2-陶瓷的晶体结构及热电性能的影响. 物理学报, doi: 10.7498/aps.60.087204
    [15] 周龙, 李涵, 苏贤礼, 唐新峰. In掺杂对n型方钴矿化合物的微结构及热电性能的影响规律. 物理学报, doi: 10.7498/aps.59.7219
    [16] 蒋明波, 吴智雄, 周敏, 黄荣进, 李来风. Bi2Te3 合金低温热电性能及冷能发电研究. 物理学报, doi: 10.7498/aps.59.7314
    [17] 曹卫强, 邓书康, 唐新峰, 李鹏. 熔体旋甩工艺对Zn掺杂Ⅰ-型Ba8Ga12Zn2Ge32笼合物微结构及热电性能的影响. 物理学报, doi: 10.7498/aps.58.612
    [18] 邓书康, 唐新峰, 张清杰. Zn掺杂p型Ba8Ga16ZnxGe30-x笼合物的合成及热电性能. 物理学报, doi: 10.7498/aps.56.4983
    [19] 刘桃香, 唐新峰, 李 涵, 宋 晨, 杨秀丽, 张清杰. Sm和Ce复合掺杂Skutterudite化合物的制备及热电性能. 物理学报, doi: 10.7498/aps.55.4837
    [20] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响. 物理学报, doi: 10.7498/aps.55.4849
计量
  • 文章访问数:  37
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-03

/

返回文章
返回