搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

体心立方多主元合金中原子应变的计算模拟

宋倩倩 张博召 丁俊

引用本文:
Citation:

体心立方多主元合金中原子应变的计算模拟

宋倩倩, 张博召, 丁俊

Atomic Strain in Body-Centered Cubic Multi-principal Element Alloys: A Computational Simulation

Qianqian Song, Bozhao Zhang, Jun Ding
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 多主元合金,亦称为高熵合金,作为一种新型合金材料,因其优异的力学性能和热稳定性在多个领域展现出巨大的应用潜力。本文采用分子动力学模拟方法,以三种典型的体心立方结构多主元合金——TaWNbMo、TiZrNb和CoFeNiTi为研究对象,系统地研究了合金中的原子局域晶格畸变特征及其影响因素。通过冯·米塞斯应变和体积应变作为描述符,我们定量分析了合金中原子应变的分布及其与晶格畸变的关系。研究结果表明,晶格畸变越大,冯·米塞斯应变和体积应变的分布范围越广,且应变值显著增加。进一步分析发现,合金中的原子半径差异、化学短程有序结构以及温度均显著影响原子应变。具体而言,原子半径差异越大,体积应变越大,而化学短程有序结构的形成有助于减小晶格畸变和原子应变。温度的升高则会导致晶格振动加剧,从而增加原子应变。本文的研究为理解高熵合金的微观力学行为提供了新的视角,并为其在高温和极端环境下的应用设计提供了理论支持。
    Multi-principal element alloys (MPEAs), also known as high-entropy alloys (HEAs), represent a class of novel materials that have garnered significant attention due to their exceptional mechanical properties, thermal stability, and resistance to wear and corrosion. These alloys are typically composed of multiple principal elements in near-equal atomic proportions, forming solid solution phases such as face-centered cubic (FCC) or body-centered cubic (BCC) structures. Despite the promising applications, a deeper understanding of the atomic-level behavior, particularly lattice distortion and atomic strain, is essential to better design and optimize these materials for extreme environments. This study focuses on systematically investigating the atomic-scale lattice distortion characteristics and their impact on atomic strain in three representative BCC-based MPEAs: TaWNbMo, TiZrNb, and CoFeNiTi. We utilize molecular dynamics (MD) simulations to explore the local atomic strain distributions in these alloys at various temperatures. Von Mises strain and volumetric strain are employed as key descriptors to quantify the atomic strain, providing a clear representation of how lattice distortion at the atomic level influences the overall strain behavior. The study specifically addresses the effects of atomic radius differences, chemical short-range ordering, and temperature on the strain characteristics of the alloys. Our results indicate that an increase in lattice distortion corresponds to a broader distribution of Von Mises strain and volumetric strain, with strain values significantly amplified. More precisely, alloys with larger atomic radius differences exhibit greater volumetric strain, reflecting the influence of atomic size disparity on strain distribution. Furthermore, the formation of chemical short-range order (CSRO) significantly mitigates lattice distortion and atomic strain. This finding highlights the importance of short-range atomic ordering in enhancing the stability of the alloy structures, thus potentially improving their mechanical properties. Temperature effects are also investigated, revealing that elevated temperatures induce more intense atomic vibrations, which in turn increase the atomic strain. The findings underscore the complex interplay between atomic-scale phenomena and macroscopic mechanical properties, offering new insights into the microscopic mechanical behavior of high-entropy alloys. This study contributes to a better understanding of the underlying mechanisms driving atomic strain and lattice distortion in MPEAs. The results provide valuable theoretical insights that can guide the design of high-performance alloys tailored for high-temperature and extreme environments. By addressing the key factors influencing atomic strain, such as atomic radius, chemical ordering, and temperature, this work lays the foundation for future research aimed at enhancing the mechanical performance of MPEAs in various industrial applications.
  • [1]

    George E P, Raabe D, Ritchie R O 2019Nat. Rev. Mater. 4 515

    [2]

    George E P, Curtin W A, Tasan C C 2020Acta Mater. 188 435

    [3]

    Miracle D B 2017J. Met. 69 2130

    [4]

    Pickering E J, Jones N G 2016Int. Mater. Rev. 61 183

    [5]

    Zhang Y, Zou T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014Prog. Mater. Sci. 61 1

    [6]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299

    [7]

    Li Z M, Pradeep K G, Deng F, Paabe D, Tasan C C 2016Nature 534 227

    [8]

    Maresca F, Curtin W A 2020Acta Mater. 182 235

    [9]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie P O 2014Science 3451153

    [10]

    Shi Y Z, Yang B, Liaw P K 2017Metals 7 18

    [11]

    Chen P Y, Lee C, Wang S Y, Seifi M, Lewandowski J J, Dahmen K A, Jia H L, Xie X, Chen B L, Yeh J W, Tsai C W, Yuan T, Liaw P K 2018Sci. China-Technol. Sci. 61 168

    [12]

    Kozelj P, Vrtnik S, Jelen A, Jazbec S, Jaglicic Z, Maiti S, Feuerbacher M, Steurer W, Dolinsek J 2014Phys. Rev. Lett. 1135

    [13]

    Su Z X, Ding J, Song M, Jiang L, Shi Tan, Li Z M, Wang S, Gao F, Ma E Lu C Y 2023 Acta Mater. 245 1359

    [14]

    Zhang Z, Su Z, Zhang B, Yu Q, Ding J, Shi T, Lu C, Ritchie R O, Ma E 2023Proc. Natl. Acad. Sci. 120116535

    [15]

    Zhang Y, Zuo T, Tang T, Gao M, Dahmen K, Liaw K, Lu Z 2014Prog. Mater. Sci. 61 1

    [16]

    Kozak P, Sologubenko A, Steurer W 2105 Z Kristallogr Cryst Mater 230 55

    [17]

    Pickering E J, Jones N G 2016Int. Mater. Rev. 61 183

    [18]

    Miracle D B, Senkov O N 2017Acta Mater. 122 448

    [19]

    Fan Z, Wang H, Wu Y, Liu X, Lu Z 2017Mater. Res. Lett. 5 187

    [20]

    Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J 2007 Mater. Chem. Phys. 103 41

    [21]

    Tong C J, Chen Y L, Chen S K, Yeh J W, Shun T T, Tsau C H, Lin S J, Chang S Y 2005Metall. Mater. Trans. A. 36 881

    [22]

    Tsai C W, Tsai M H, Yeh J W, Yang C C 2010J. Alloys Compd. 490 160

    [23]

    Yeh J W, Chen S K, Gan J Y, Lin S J, Chin T S, Shun T T, Tsau C H, Chang S Y 2004Metall. Mater. Trans. A. 35 2533

    [24]

    Yang Y, He Q F 2021Acta Metall. Sin. 57 385

    [25]

    Zou Y, Maiti S, Steurer W, Spolenak R 2014Acta Mater. 6585

    [26]

    Santodonato L J, Zhang Y, Feygenson M, Parish C M, Gao M C, Weber R J,Neuefeind J C, Tang Z, Liaw P K 2015 Nat. Commun. 6 5964

    [27]

    Toda-Caraballo I, Wr obel J S, Dudarev S L, Nguyen-Manh D, Rivera-Díaz-del-Castillo P E 2015Acta Mater. 97 156

    [28]

    Tian L Y, Hu Q M, Yang R, Zhao J, Johansson B, Vitos L 2015J. Phys. Condens. Matter 27 315702

    [29]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2023Scr. Mater. 222 115048

    [30]

    Tandoc C, Hu Y J, Qi L, Liaw P K 2023npj Comput Mater 9 53

    [31]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [32]

    Yin S, Zuo Y X, Abu-Odeh A,Zhang H, Li X G, Ding J, Ong S P, Asta M, Ritchie R 2021Nat.Commun. 12 4873

    [33]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2020Proc. Natl. Acad. Sci. 28 117

    [34]

    Stukowski A 2009Model. Simul. Mater. Sc 18 015012

    [35]

    Wang J H, Li J, Yip S, Phillpot S, Wolf D 1995Phys. Rev. B 52 12627

    [36]

    Li J 2003Model. Simul. Mater. Sci. Eng. 11 173

    [37]

    Wang L, Ding J, Chen S S, Jin K, Zhang Q H, Cui J X, Wang B P, Chen B, Li T Y, Ren Y, Zheng S J, Ming K S, Lu W J, Hou J H, Sha G, Liang J, Wang L, Xue Y F, Ma E 2023Nat. Mater. 22 950

    [38]

    Zhang M, Zhang B Z, Ding J, Ma E 2025Scripta Mater. 259 116559

    [39]

    Ding J, Yu Q, Asta M, O.Ritchie R 2018Proc. Natl. Acad. Sci. 115 8919

    [40]

    Zhang F X, Zhao S J, Jin K, Xue H, Velisa G, Bei H, Huang R, Ko J Y P, Pagan D C, Neuefeind J C, Weber W J, Zhang Y W 2017 Phys. Rev. Lett. 118 05501

    [41]

    Zhang R P, Zhao S T, Ding J, Chong Y, Jia T, Ophus C, Asta M, O.Ritchie R, Minor M A. 2020Nature 581 283

    [42]

    Xun K H, Zhang B Z, Wang Q, Zhang Z, Ding J, Ma E 2023J. Mater. Sci. Technol. 135 221

    [43]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2024Acta. Mater. 272 119910

    [44]

    He Q F, Wang J G, Chen H A, Ding Z Y, Zhou Z Q, Xiong L H, Luan J H, Pelletier J M, Qiao J C, Wang Q, Fan L L, Zeng Q S, Liu C T, Pao C W, Srolovitz D J, Yang Y 2022Nature 602 251

    [45]

    Tan Y Y, Chen Z J, Su M Y, Ding G, Jiang M Q, Xie Z C, Gong Y, Wu T, Wu Z H, Wang H Y, Dai L H 2022J. Mater. Sci. Technol. 104 236

  • [1] 韦昭召. 不同取向B2结构FeAl合金纳米线弯曲行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.74.20241030
    [2] 熊浩智, 王云江. 镍钴铬多主元合金高温高压相图与相变动力学模拟. 物理学报, doi: 10.7498/aps.74.20250097
    [3] 周晗, 耿轶钊, 晏世伟. p53活性四聚体全原子分子动力学分析. 物理学报, doi: 10.7498/aps.73.20231515
    [4] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞. GaAs晶体在不同应变下生长过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.72.20221860
    [5] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, doi: 10.7498/aps.71.20221368
    [6] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210324
    [7] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, doi: 10.7498/aps.69.20191781
    [8] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.69.20191903
    [9] 齐玉, 曲昌荣, 王丽, 方腾. Fe50Cu50合金熔体相分离过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.46401
    [10] 颜超, 段军红, 何兴道. Ni原子倾斜轰击Pt(111)表面低能溅射现象的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.088301
    [11] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.045209
    [12] 颜超, 段军红, 何兴道. 低能原子沉积在Pt(111)表面的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.8807
    [13] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟. 物理学报, doi: 10.7498/aps.58.2637
    [14] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, doi: 10.7498/aps.56.1494
    [15] 王永亮, 张 超, 唐 鑫, 张庆瑜. 表面Cu原子间相互作用对Cu(001)表面跳跃扩散行为的影响. 物理学报, doi: 10.7498/aps.55.4214
    [16] 何 兰, 沈允文, 容启亮, 徐 雁. 基于分子动力学模拟的主链型液晶聚合物的新模型. 物理学报, doi: 10.7498/aps.55.4407
    [17] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟. 物理学报, doi: 10.7498/aps.55.2418
    [18] 张端明, 严文生, 钟志成, 杨凤霞, 郑克玉, 李智华. PZT四方相区介电常数εr与晶格畸变关系的研究. 物理学报, doi: 10.7498/aps.53.1316
    [19] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, doi: 10.7498/aps.52.2520
    [20] 叶子燕, 张庆瑜. 低能Pt原子团簇沉积过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.2798
计量
  • 文章访问数:  60
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-06

/

返回文章
返回