搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

体心立方多主元合金中原子应变的计算模拟

宋倩倩 张博召 丁俊

引用本文:
Citation:

体心立方多主元合金中原子应变的计算模拟

宋倩倩, 张博召, 丁俊

Computational simulation of atomic strain in body-centered cubic multi-principal element alloys

SONG Qianqian ¹, ZHANG Bozhao ², DING Jun ¹
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 多主元合金, 亦称为高熵合金, 作为一种新型合金材料, 因其优异的力学性能和热稳定性在多个领域展现出巨大的应用潜力. 本文采用分子动力学模拟方法, 以3种典型的体心立方结构多主元合金——TaWNbMo, TiZrNb和CoFeNiTi为研究对象, 系统研究了合金中的原子局域晶格畸变特征及其影响因素. 通过冯·米塞斯应变和体积应变作为描述符, 定量分析了合金中原子应变的分布及其与晶格畸变的关系. 研究结果表明, 晶格畸变越大, 冯·米塞斯应变和体积应变的分布范围越广, 且应变值显著增大. 进一步分析发现, 合金中的原子半径差异、化学短程有序结构以及温度均显著影响原子应变. 具体而言, 原子半径差异越大, 体积应变越大, 而化学短程有序结构的形成有助于减小晶格畸变和原子应变. 温度的升高则会导致晶格振动加剧, 从而增大原子应变. 本文的研究为理解高熵合金的微观力学行为提供了新的视角, 并为其在高温和极端环境下的应用设计提供了理论支持.
    Multi-principal element alloys (MPEAs), also known as high-entropy alloys (HEAs), are novel materials that have received significant attention due to their exceptional mechanical properties, thermal stability, and resistance to wear and corrosion. These alloys are typically composed of multiple principal elements in near-equal atomic proportions, forming solid solution phases such as face-centered cubic (FCC) or body-centered cubic (BCC) structures. Despite the promising applications, a more in-depth understanding of the atomic-level behavior, particularly, lattice distortion and atomic strain, is essential to better design and optimize these materials in extreme environments. This study focuses on systematically investigating the atomic-scale lattice distortion characteristics and their influence on atomic strain in three representative BCC-based MPEAs: TaWNbMo, TiZrNb, and CoFeNiTi. We utilize molecular dynamics (MD) simulations to explore the local atomic strain distributions in these alloys at various temperatures. Von Mises strain and volumetric strain are employed as key descriptors to quantify the atomic strain, providing a clear representation of how lattice distortion on an atomic scale influences the overall strain behavior. The study specifically addresses the effects of atomic radius differences, chemical short-range ordering, and temperature on the strain characteristics of the alloys. The results obtained indicate that an increase in lattice distortion corresponds to a broader distribution of von Mises strain and volumetric strain, with strain values significantly amplified. More precisely, alloys with larger atomic radius differences exhibit greater volumetric strain, reflecting the influence of atomic size disparity on strain distribution. Furthermore, the formation of chemical short-range order (CSRO) significantly mitigates lattice distortion and atomic strain. This finding highlights the importance of short-range atomic ordering in enhancing the stability of the alloy structures, thus potentially improving their mechanical properties. Temperature effects are also investigated, revealing that elevated temperature induces more intense atomic vibration, which in turn increases the atomic strain. The findings underscore the complex interplay between atomic-scale phenomena and macroscopic mechanical properties, offering new insights into the microscopic mechanical behavior of high-entropy alloys. This study contributes to a better understanding of the underlying mechanisms driving atomic strain and lattice distortion in MPEAs. The results provide valuable theoretical insights that can guide the design of high-performance alloys tailored for high-temperature and extreme environments. By addressing the key factors influencing atomic strain, such as atomic radius, chemical ordering, and temperature, this work lays the foundation for future research aimed at enhancing the mechanical performance of MPEAs in various industrial applications.
  • 图 1  多主元合金中的晶格畸变及局域原子应变 (a)晶格畸变示意图, 局部仿射变换矩阵$ {J}_{i} $ 描述了初始与当前原子构型之间的转变; (b) 0 K下TiZrNb合金中的原子应变示例, 左图为每个原子的冯·米塞斯应变, 右图为每个原子的体积应变

    Fig. 1.  Lattice distortion and local atomic strain in multi-principal element alloys: (a) Schematic of lattice distortion, where the local affine transformation matrix $ {J}_{i} $ describes the transition from the initial to the current atomic configuration; (b) atomic strain distribution in the TiZrNb alloy at 0 K, the left panel displays the Von Mises strain for each atom, while the right panel shows the volumetric strain.

    图 2  不同合金体系的三维原子分布模型及其原子应变的分布 (a) TaWNbMo, TiZrNb和CoFeNiTi的三维原子分布模型; (b) 3种合金体系的冯·米塞斯应变和体积应变的分布

    Fig. 2.  Three-dimensional atomic distribution models and atomic strain distributions in different alloy systems: (a) Three-dimensional atomic distribution models of TaWNbMo, TiZrNb, and CoFeNiTi; (b) distribution of Von Mises strain and volumetric strain for the three alloy systems.

    图 3  三种合金体系中不同组元的冯·米塞斯应变和体积应变的分布, 展示了TaWNbMo, TiZrNb和CoFeNiTi三种合金体系中不同组元的冯·米塞斯应变和体积应变的分布, 每种合金中的不同组元(Ta, W, Nb, Mo, Ti, Zr, Nb, 和Co, Fe, Ni, Ti)分别绘制了应变分布图, 上半部分为冯·米塞斯应变的分布, 下半部分为体积应变的分布, 不同颜色的曲线对应于不同的元素, 反映了各组元在合金中的应变特性差异

    Fig. 3.  Distribution of von Mises strain and volumetric strain for different elements in the TaWNbMo, TiZrNb, and CoFeNiTi alloy systems. The strain distributions for different elements (Ta, W, Nb, Mo, Ti, Zr, Nb, Co, Fe, Ni, Ti) in each alloy are shown. The upper part of the figure shows the distribution of von Mises strain, while the lower part shows the distribution of volumetric strain. The different colored curves represent different elements, reflecting the strain characteristics of each element in the alloy.

    图 4  TiZrNb合金在800 K下的化学短程有序信息及其原子应变分布特征 (a)化学短程有序构型的三维原子分布模型; (b)不同原子对的Warren-Cowley参数, 展示了合金中各原子对之间的短程有序程度; (c)冯·米塞斯应变的频率分布, 分别为CSRO和RSS两种不同的化学短程有序状态下的应变分布; (d)体积应变的频率分布, 展示了不同原子对间的体积应变分布特征

    Fig. 4.  Chemical short-range order information and atomic strain distribution characteristics of TiZrNb alloy at 800 K: (a) Three-dimensional atomic distribution model of the chemical short-range ordered configuration; (b) Warren-Cowley parameters for different atomic pairs, showing the degree of short-range order between atomic pairs in the alloy; (c) distribution of von Mises strain, showing the strain distributions under CS0 and RSS short-range order configurations; (d) frequency distribution of volumetric strain, illustrating the volumetric strain characteristics between different atomic pairs.

    图 5  不同温度下TiZrNb合金的冯·米塞斯应变和体积应变频率分布图, 图中展示的温度范围从0—1200 K, 分别以不同颜色表示不同的温度状态 (a)冯·米塞斯应变的分布; (b)体积应变的分布

    Fig. 5.  Frequency distribution of von Mises strain and volumetric strain of TiZrNb alloy at various temperatures, ranging from 0 K to 1200 K: (a) Distribution of von Mises strain; (b) distribution of volumetric strain.

  • [1]

    George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [2]

    George E P, Curtin W A, Tasan C C 2020 Acta Mater. 188 435Google Scholar

    [3]

    Miracle D B 2017 J. Met. 69 2130

    [4]

    Pickering E J, Jones N G 2016 Int. Mater. Rev. 61 183Google Scholar

    [5]

    Zhang Y, Zou T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1Google Scholar

    [6]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [7]

    Li Z M, Pradeep K G, Deng F, Paabe D, Tasan C C 2016 Nature 534 227Google Scholar

    [8]

    Maresca F, Curtin W A 2020 Acta Mater. 182 235

    [9]

    Gludovatz B, Hohenwarter A, Catoor D, Chang E H, George E P, Ritchie P O 2014 Science 345 1153Google Scholar

    [10]

    Shi Y Z, Yang B, Liaw P K 2017 Metals 7 18Google Scholar

    [11]

    Chen P Y, Lee C, Wang S Y, Seifi M, Lewandowski J J, Dahmen K A, Jia H L, Xie X, Chen B L, Yeh J W, Tsai C W, Yuan T, Liaw P K 2018 Sci. China-Technol. Sci. 61 168Google Scholar

    [12]

    Kozelj P, Vrtnik S, Jelen A, Jazbec S, Jaglicic Z, Maiti S, Feuerbacher M, Steurer W, Dolinsek J 2014 Phys. Rev. Lett. 113 5

    [13]

    Su Z X, Ding J, Song M, Jiang L, Shi Tan, Li Z M, Wang S, Gao F, Ma E Lu C Y 2023 Acta Mater. 245 1359

    [14]

    Zhang Z, Su Z, Zhang B, Yu Q, Ding J, Shi T, Lu C, Ritchie R O, Ma E 2023 Proc. Natl. Acad. Sci. 120 116535

    [15]

    Zhang Y, Zuo T, Tang T, Gao M, Dahmen K, Liaw K, Lu Z 2014 Prog. Mater. Sci. 61 1Google Scholar

    [16]

    Kozak P, Sologubenko A, Steurer W 2105 Z Kristallogr Cryst Mater 230 55

    [17]

    Pickering E J, Jones N G 2016 Int. Mater. Rev. 61 183Google Scholar

    [18]

    Miracle D B, Senkov O N 2017 Acta Mater. 122 448Google Scholar

    [19]

    Fan Z, Wang H, Wu Y, Liu X J, Lu Z P 2017 Mater. Res. Lett. 5 187Google Scholar

    [20]

    Yeh J W, Chang S Y, Hong Y D, Chen S K, Lin S J 2007 Mater. Chem. Phys. 103 41Google Scholar

    [21]

    Tong C J, Chen Y L, Chen S K, Yeh J W, Shun T T, Tsau C H, Lin S J, Chang S Y 2005 Metall. Mater. Trans. A 36 881Google Scholar

    [22]

    Tsai C W, Tsai M H, Yeh J W, Yang C C 2010 J. Alloys Compd. 490 160Google Scholar

    [23]

    Yeh J W, Chen S K, Gan J Y, Lin S J, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Metall. Mater. Trans. A 35 2533Google Scholar

    [24]

    杨勇, 赫全锋 2021 金属学报 57 385Google Scholar

    Yang Y, He Q F 2021 Acta Metall. Sin. 57 385Google Scholar

    [25]

    Zou Y, Maiti S, Steurer W, Spolenak R 2014 Acta Mater. 65 85Google Scholar

    [26]

    Santodonato L J, Zhang Y, Feygenson M, Parish C M, Gao M C, Weber R J, Neuefeind J C, Tang Z, Liaw P K 2015 Nat. Commun. 6 5964

    [27]

    Toda-Caraballo I, Wr obel J S, Dudarev S L, Nguyen-Manh D, Rivera-Díaz-del-Castillo P E 2015 Acta Mater. 97 156Google Scholar

    [28]

    Tian L Y, Hu Q M, Yang R, Zhao J, Johansson B, Vitos L 2015 J. Phys. Condens. Mat. 27 315702Google Scholar

    [29]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2023 Scr. Mater. 222 115048Google Scholar

    [30]

    Tandoc C, Hu Y J, Qi L, Liaw P K 2023 npj Comput. Mater. 9 53Google Scholar

    [31]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [32]

    Yin S, Zuo Y X, Abu-Odeh A, Zhang H, Li X G, Ding J, Ong S P, Asta M, Ritchie R 2021 Nat. Commun. 12 4873Google Scholar

    [33]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2020 Proc. Natl. Acad. Sci. 28 117

    [34]

    Stukowski A 2009 Model. Simul. Mater. Sc. 18 015012

    [35]

    Wang J H, Li J, Yip S, Phillpot S, Wolf D 1995 Phys. Rev. B 52 12627Google Scholar

    [36]

    Li J 2003 Model. Simul. Mater. Sci. Eng. 11 173Google Scholar

    [37]

    Wang L, Ding J, Chen S S, Jin K, Zhang Q H, Cui J X, Wang B P, Chen B, Li T Y, Ren Y, Zheng S J, Ming K S, Lu W J, Hou J H, Sha G, Liang J, Wang L, Xue Y F, Ma E 2023 Nat. Mater. 22 950Google Scholar

    [38]

    Zhang M, Zhang B Z, Ding J, Ma E 2025 Scripta Mater. 259 116559Google Scholar

    [39]

    Ding J, Yu Q, Asta M, O. Ritchie R 2018 Proc. Natl. Acad. Sci. 115 8919Google Scholar

    [40]

    Zhang F X, Zhao S J, Jin K, Xue H, Velisa G, Bei H, Huang R, Ko J Y P, Pagan D C, Neuefeind J C, Weber W J, Zhang Y W 2017 Phys. Rev. Lett. 118 05501

    [41]

    Zhang R P, Zhao S T, Ding J, Chong Y, Jia T, Ophus C, Asta M, O. Ritchie R, Minor M A. 2020 Nature 581 283Google Scholar

    [42]

    Xun K H, Zhang B Z, Wang Q, Zhang Z, Ding J, Ma E 2023 J. Mater. Sci. Technol. 135 221Google Scholar

    [43]

    Chen B, Li S Z, Ding J, Ding X D, Sun J, Ma E 2024 Acta Mater. 272 119910Google Scholar

    [44]

    He Q F, Wang J G, Chen H A, Ding Z Y, Zhou Z Q, Xiong L H, Luan J H, Pelletier J M, Qiao J C, Wang Q, Fan L L, Zeng Q S, Liu C T, Pao C W, Srolovitz D J, Yang Y 2022 Nature 602 251Google Scholar

    [45]

    Tan Y Y, Chen Z J, Su M Y, Ding G, Jiang M Q, Xie Z C, Gong Y, Wu T, Wu Z H, Wang H Y, Dai L H 2022 J. Mater. Sci. Technol. 104 236Google Scholar

  • [1] 韦昭召. 不同取向B2结构FeAl合金纳米线弯曲行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.74.20241030
    [2] 熊浩智, 王云江. 镍钴铬多主元合金高温高压相图与相变动力学模拟. 物理学报, doi: 10.7498/aps.74.20250097
    [3] 周晗, 耿轶钊, 晏世伟. p53活性四聚体全原子分子动力学分析. 物理学报, doi: 10.7498/aps.73.20231515
    [4] 袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞. GaAs晶体在不同应变下生长过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.72.20221860
    [5] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, doi: 10.7498/aps.71.20221368
    [6] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210324
    [7] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, doi: 10.7498/aps.69.20191781
    [8] 韦昭召, 马骁, 柯常波, 张新平. Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.69.20191903
    [9] 齐玉, 曲昌荣, 王丽, 方腾. Fe50Cu50合金熔体相分离过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.63.46401
    [10] 颜超, 段军红, 何兴道. Ni原子倾斜轰击Pt(111)表面低能溅射现象的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.088301
    [11] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟. 物理学报, doi: 10.7498/aps.60.045209
    [12] 颜超, 段军红, 何兴道. 低能原子沉积在Pt(111)表面的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.8807
    [13] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟. 物理学报, doi: 10.7498/aps.58.2637
    [14] 金年庆, 滕玉永, 顾 斌, 曾祥华. 稀有气体原子注入缺陷性纳米碳管的分子动力学模拟. 物理学报, doi: 10.7498/aps.56.1494
    [15] 王永亮, 张 超, 唐 鑫, 张庆瑜. 表面Cu原子间相互作用对Cu(001)表面跳跃扩散行为的影响. 物理学报, doi: 10.7498/aps.55.4214
    [16] 何 兰, 沈允文, 容启亮, 徐 雁. 基于分子动力学模拟的主链型液晶聚合物的新模型. 物理学报, doi: 10.7498/aps.55.4407
    [17] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟. 物理学报, doi: 10.7498/aps.55.2418
    [18] 张端明, 严文生, 钟志成, 杨凤霞, 郑克玉, 李智华. PZT四方相区介电常数εr与晶格畸变关系的研究. 物理学报, doi: 10.7498/aps.53.1316
    [19] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, doi: 10.7498/aps.52.2520
    [20] 叶子燕, 张庆瑜. 低能Pt原子团簇沉积过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.51.2798
计量
  • 文章访问数:  246
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-26
  • 修回日期:  2025-02-19
  • 上网日期:  2025-03-06

/

返回文章
返回