搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水分子跨细胞膜交换的磁共振测量技术研究进展

李昭青 韩益华 王泽君 白瑞良

引用本文:
Citation:

水分子跨细胞膜交换的磁共振测量技术研究进展

李昭青, 韩益华, 王泽君, 白瑞良

Research progress of magnetic resonance measurements of transcytolemmal water exchange

LI Zhaoqing, HAN Yihua, WANG Zejun, BAI Ruiliang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 水分子跨细胞膜交换是维持细胞稳态和功能的重要过程, 是肿瘤增殖、预后以及细胞状态的潜在生物学标志物. 利用磁共振方法测量水分子跨细胞膜的交换速率可追溯到20世纪60年代, 研究者在血红细胞悬液样本中测量细胞内水分子的停留时间. 之后, 人们发现了生物组织中磁共振信号的多指数特征, 并发现水分子跨膜交换过程有可能是解释该特征的因素之一, 利用磁共振方法测量水分子跨细胞膜交换过程的研究至此拉开序幕. 经过几十年的发展, 磁共振领域目前对水分子跨细胞膜交换测量的技术大致可以分为两类: 一种基于弛豫时间, 另一种基于扩散. 本文将梳理相关磁共振技术的发展历程, 对代表性技术的测量原理、数学/生物物理模型、不同技术的测量结果及验证进行介绍. 最后对不同方法的应用场景和优缺点进行讨论, 并对该领域的发展进行展望.
    Transcytolemmal water exchange is a critical process for maintaining cellular homeostasis and function, serving as a potential biological marker for tumor proliferation, prognosis, and cellular states. The use of magnetic resonance imaging (MRI) to measure transcytolemmal water exchange can be traced back to the 1960s, when researchers first measured the residence time of intracellular water molecules in erythrocyte suspensions. Meanwhile, the multi-exponential nature of nuclear magnetic resonance signals in biological tissues was discovered. Studies suggested that transcytolemmal water exchange could be one of the factors explaining this characteristic, marking the beginning of research into measuring transcytolemmal water exchange by using magnetic resonance techniques. After decades of development, the current MRI techniques for measuring transcytolemmal water exchange can be broadly classified into two types: relaxation time based and diffusion based magnetic resonance measurement methods. This review introduces the development of these technologies, and discusses the principles, mathematical/biophysical models, results, and validation of representative methods. Regarding relaxation-based MR techniques, this review systematically organizes MRI methods to quantify transcytolemmal water exchange through chronological developments of three biological substrates: ex vivo cell suspensions, ex vivo biological tissues, and in vivo biological tissues. The modeling section emphasizes two frameworks, including the two-site-exchange model and the three-site-two-exchange shutter-speed model. Regarding diffusion-based MR techniques, this review introduces the research progress of diffusion-encoding and modeling for water exchange measurement. The diffusion-encoding methods are introduced according to single diffusion encoding sequences and the double diffusion encoding sequences. For modeling, it covers three types, including the Kärger model based on the two-component Gaussian diffusion assumption, the modified Kärger model incorporating restricted diffusion effects, and first-order reaction kinetic model. Additionally, comparative studies among different diffusion-based methodologies are also discussed. Finally, this review evaluates their respective clinical applications, advantages, and limitations. Finally, the future prospects for technological development in this field are proposed.
  • 图 1  脑组织中水分子跨膜过程概述 (a) 水分子跨血脑屏障交换; (b) 水分子跨细胞膜交换; (c) 水分子跨血液-脑脊液屏障交换, 在脑室中, 水通道蛋白AQP存在于脑脊液界面的室管膜细胞的基底外膜; (d) 水分子跨脑脊液-脑实质屏障的交换, 蛛网膜下腔的脑脊液通过动脉周围间隙流入大脑, 然后通过位于星形胶质细胞终足的水通道蛋白与脑间质液交换

    Fig. 1.  The transmembrane process of water molecules in brain tissue can be summarized as: (a) Exchange of water molecules across the BBB (blood-brain barrier); (b) exchange of water molecules across cell membranes; (c) exchange of water molecules across the blood-CSF barrier. In the ventricle, AQP is present in the basal outer membrane of ependymal cells at the interface of cerebrospinal fluid; (d) exchange of water molecules across the CSF-brain parenchymal barrier. The cerebrospinal fluid in the subarachnoid space flows into the brain through the periarterial space and is then exchanged with the interstitial fluid via aquaporins located in the astrocyte endfeet.

    图 2  水分子跨细胞膜被动(p)交换途径和主动(a)交换途径的示意图, 其中$ {k}_{\text{io}} $是细胞内水交换到细胞外空间的速率常数, $ {k}_{\text{oi}} $是细胞外水交换到细胞内空间的速率常数; II和III分别表示K+外流通道和Na+内流通道, I和IV表示水分子共运通道

    Fig. 2.  Illustration of the passive (p) and potentially active (a) transcytolemmal water exchange pathways, where $ {k}_{\text{io}} $ is the exchange rate of water from the cell into the extracellular space, $ {k}_{\text{oi}} $ is the exchange rate of water from the outside into the intracellular space, II and III represent transporters K+ uses to re-exit and Na+ uses to re-enter the cell, respectively, and I and IV represent water co-transporters that H2O uses to exit and enter the cell.

    图 3  水分子稳态跨膜交换过程的模型, 左边方框表示细胞外空间(outside), 右边方框表示细胞内空间(inside)

    Fig. 3.  Model of steady-state transmembrane exchange of water molecules, the left box represents the extracellular space, and the right box represents the intracellular space.

    图 4  快门速度(shutter-speed, SS)概念示意图, SS定义为细胞内外纵向弛豫速率的差值, 其中, $ {k}_{{\mathrm{b}}{\mathrm{o}}} $表示血管内水分子到细胞间隙的流出速率, $ {k}_{{\mathrm{o}}{\mathrm{b}}} $表示细胞间隙的水分子到血管内的流入速率, $ {k}_{{\mathrm{p}}{\mathrm{e}}} $表示对比剂分子从血管内到细胞间隙的渗透速率, $ {k}_{{\mathrm{e}}{\mathrm{p}}} $表示对比剂分子从细胞间隙渗透到血管内的速率; Gd代表对比剂分子, 不能进入细胞内

    Fig. 4.  Conceptual diagram of shutter speed (SS), SS is defined as the difference in longitudinal relaxation rates between intracellular and extracellular spaces. Here, $ {k}_{{\mathrm{b}}{\mathrm{o}}} $ denotes the efflux rate of water molecules from the blood vessels to the interstitial space, while $ {k}_{{\mathrm{o}}{\mathrm{b}}} $ denotes the influx rate of water molecules from the interstitial space to the blood vessels, $ {k}_{{\mathrm{p}}{\mathrm{e}}} $ represents the rate of contrast agent molecules diffusing from the blood vessels to the interstitial space, and $ {k}_{{\mathrm{e}}{\mathrm{p}}} $ represents the rate of contrast agent molecules diffusing from the interstitial space to the blood vessels. Gd represents the contrast agent molecules, which cannot enter the cells.

    图 5  (a) 从磁共振信号获取的表观纵向弛豫速率$ {R}_{1{\mathrm{L}}} $, $ {R}_{1{\mathrm{S}}} $随细胞外对比剂浓度[CR0]的变化曲线[53], 不存在水交换时, $ {R}_{1{\mathrm{S}}} $的值和对比剂的浓度符合$ {r}_{1{\mathrm{o}}}\left[{\mathrm{C}}{{\mathrm{R}}}_{0}\right]+{R}_{1{\mathrm{o}}0} $, 在图中的偏左侧区域表示(kio+koi)远大于快门速度$ \left|R{1}_{{\mathrm{i}}}-R{1}_{{\mathrm{o}}}\right| $, 此时处于快交换边界; (b) (a)图中左侧区域的放大图; (c) 表观弛豫速率快的组分的信号占比随对比剂浓度的变化曲线, 当其接近细胞外水含量占比时, 认为系统进入到慢交换边界, 此时, 对细胞内停留时间的计算可参考(1)式, 即$ {R}_{1{\mathrm{L}}}={R}_{1{\mathrm{i}}}+{\tau }_{{\mathrm{i}}}^{-1} $. 上述曲线根据(8)式—(10)式绘制, 其中, $ {p}_{{\mathrm{i}}}=0.85 $, $ {\tau }_{{\mathrm{i}}}=1.0{\mathrm{s}} $, $ {R}_{1{\mathrm{i}}}=0.67\;{{\mathrm{s}}}^{-1} $, $ {R}_{1{\mathrm{o}}0}=0.5\;{{\mathrm{s}}}^{-1} $, $ {r}_{1{\mathrm{o}}}=3.75\;{\mathrm{m}}{{\mathrm{m}}{\mathrm{o}}{\mathrm{l}}}^{-1}{\cdot}{\mathrm{L}}{\cdot}{{\mathrm{s}}}^{-1} $(注: 图中仿真曲线根据(8)式—(10)式绘制)

    Fig. 5.  (a) The curves of apparent longitudinal relaxation rates $ {R}_{1{\mathrm{L}}} $ and $ {R}_{1{\mathrm{S}}} $ as a function of extracellular contrast agent concentration $ \left[{\mathrm{C}}{{\mathrm{R}}}_{0}\right] $ obtained from magnetic resonance signals[53], in the absence of water exchange, the value of $ {R}_{1{\mathrm{S}}} $ is proportional to the contrast agent concentration, following the relation $ {r}_{1{\mathrm{o}}}\left[{\mathrm{C}}{{\mathrm{R}}}_{0}\right]+{R}_{1{\mathrm{o}}0} $, the region on the left side of the figure indicates that (kio+koi) is much greater than the shutter speed $ \left|R{1}_{{\mathrm{i}}}-R{1}_{{\mathrm{o}}}\right| $, which corresponds to the fast exchange boundary; (b) an enlarged view of the left-side region in (a); (c) the curve showing the proportion of signal from the fast component of the apparent relaxation rate as a function of contrast agent concentration, when it approaches the proportion of extracellular water content, the system is considered to have reached the slow-exchange limit. At this point, the calculation of intracellular residence time can refer to Eq. (1), where $ {R}_{1{\mathrm{L}}}={R}_{1{\mathrm{i}}}+{\tau }_{{\mathrm{i}}}^{-1} $. The above curves are plotted according to Eqs. (2) to (4), where $ {p}_{{\mathrm{i}}}=0.85 $, $ {\tau }_{{\mathrm{i}}}=1.0{\mathrm{s}} $, $ {R}_{1{\mathrm{i}}}=0.67\;{{\mathrm{s}}}^{-1} $, $ {R}_{1{\mathrm{o}}0}=0.5\;{{\mathrm{s}}}^{-1} $, $ {r}_{1{\mathrm{o}}}=3.75\;{\mathrm{m}}{{\mathrm{m}}{\mathrm{o}}{\mathrm{l}}}^{-1}{\cdot}{\mathrm{L}}{\cdot}{{\mathrm{s}}}^{-1}, $ these are simulation curves made according to Eqs. (8) to (10).

    图 6  DCE-MRI不同模型的示意图, 其中, S1M和S2M分别为第1代和第2代的快门速度模型(SSM), 此外, 本文选择eTofts模型作为处理DCE-MRI的传统药代动力学模型代表, 在S1M中, 忽略了血管水占比, 只考虑细胞膜内外水交换$ {k}_{{\mathrm{i}}{\mathrm{o}}} $和$ {k}_{{\mathrm{o}}{\mathrm{i}}} $; 在S2M中, 同时考虑$ {k}_{{\mathrm{i}}{\mathrm{o}}} $和$ {k}_{{\mathrm{o}}{\mathrm{i}}} $、$ {k}_{{\mathrm{b}}{\mathrm{o}}} $和$ {k}_{{\mathrm{o}}{\mathrm{b}}}{\mathrm{以}}{\mathrm{及}}{k}^{{\mathrm{t}}{\mathrm{r}}{\mathrm{a}}{\mathrm{n}}{\mathrm{s}}} $血管内$ {k}_{{\mathrm{p}}{\mathrm{e}}} $和$ {k}_{{\mathrm{e}}{\mathrm{p}}} $; 在eTofts模型中, 血管内外和细胞内外的水交换被假设为无穷快

    Fig. 6.  The schematic diagrams of different models used in DCE-MRI. Among them, S1M and S2M represent the first and second generation of the Shutter speed model (SSM). In addition, the eTofts model is selected here as a representative traditional pharmacokinetic model for processing DCE-MRI. In S1M, the vascular water fraction is ignored, and only the water exchange between intracellular and extracellular spaces is considered (kio and koi). In S2M, both vascular and cellular water exchanges are considered, with the permeability of the contrast agent from the vascular space to the interstitial space being accounted for(kbo and kob). $ {k}^{{\mathrm{t}}{\mathrm{r}}{\mathrm{a}}{\mathrm{n}}{\mathrm{s}}} $, the product of the permeability of the contrast agent in the vasculature ($ {k}_{{\mathrm{p}}{\mathrm{e}}} $ and $ {k}_{{\mathrm{e}}{\mathrm{p}}}) $. In the eTofts model, water exchange between both the vasculature and the cells is assumed to be instantaneous.

    图 7  细胞内水分子流出速率$ {k}_{{\mathrm{i}}{\mathrm{o}}} $是胶质瘤中AQP4表达高敏感、高特异性的潜在影像标志物 (a) 左上图为一位胶质瘤患者$ {k}_{{\mathrm{i}}{\mathrm{o}}} $参数图(彩色)的示意图, 其中白色箭头指向处即活检点位置, 对应活检点的免疫组化结果见左下图, 右图为来自19位胶质瘤患者共45个活检点的$ {k}_{{\mathrm{i}}{\mathrm{o}}} $参数和AQP4表达量间的相关性结果, 其中AQP4表达量通过切片中AQP4阳性的细胞所占的比例进行定量化; (b) 左图为在大鼠胶质瘤模型(C6细胞)中第1天注射生理盐水和第2天利用TGN020特异性抑制AQP4后, 肿瘤区域的$ {k}_{{\mathrm{i}}{\mathrm{o}}} $参数图, 右图为注射生理盐水和TGN020后肿瘤区域平均$ {k}_{{\mathrm{i}}{\mathrm{o}}} $的统计结果, TGN020特异性抑制AQP4后, $ {k}_{{\mathrm{i}}{\mathrm{o}}} $显著下降43%(n = 9); *表示统计分析p值小于0.05. 图片改自参考文献[41]

    Fig. 7.  The intracellular water efflux rate ($ {k}_{{\mathrm{i}}{\mathrm{o}}} $) is a potentially high-sensitivity and high-specificity imaging biomarker for AQP4 expression in gliomas. (a) The upper left diagram shows a schematic of the $ {k}_{{\mathrm{i}}{\mathrm{o}}} $ map for a glioma patient, with the white arrow indicating the location of the biopsy site. The corresponding immunohistochemical results for the biopsy site are shown in the lower left diagram, the right diagram presents the correlation between $ {k}_{{\mathrm{i}}{\mathrm{o}}} $ parameters and AQP4 expression levels from 45 biopsy sites in 19 glioma patients, with AQP4 expression quantified as the proportion of AQP4-positive cells in the sections. (b) The upper left diagram shows the $ {k}_{io} $ parameter maps of the tumor region in a rat glioma model (C6 cells) on the first day after injection of saline and on the second day after specific inhibition of AQP4 with TGN020. The right diagram presents the statistical results of the average $ {k}_{{\mathrm{i}}{\mathrm{o}}} $ in the tumor region after injection of saline and TGN020, with a significant 43% decrease in $ {k}_{{\mathrm{i}}{\mathrm{o}}} $ after specific inhibition of AQP4 by TGN020 (n = 9). This figure was adapted from the Ref. [41].

    图 8  胶质瘤细胞中AQP4表达水平与治疗抵抗存在相关 (a) 低AQP4的细胞亚型以胶质瘤干细胞特征的慢增殖细胞为主, 在替莫唑胺(TMZ)治疗下存活, 细胞核完整, 并且表达更多的治疗抵抗标志蛋白ZEB1; (b) 高AQP4的细胞亚型则以胶质瘤干细胞特征的快增殖细胞为主, 在TMZ治疗3天后细胞核受损, 表现出治疗敏感性, ZEB1为锌指增强子结合蛋白1; DAPI为4', 6-二脒基–2-苯基吲哚; CTV为指细胞增殖荧光示踪剂; 图片改自参考文献[41]

    Fig. 8.  The expression level of AQP4 in glioma cells is correlated with treatment resistance: (a) The low-AQP4 cell subtype is mainly composed of slow-proliferating cells with glioma stem cell characteristics, which survive under temozolomide (TMZ) treatment with intact nucleus and express higher levels of the treatment resistance marker protein ZEB1; (b) in contrast, the high-AQP4 cell subtype is mainly composed of fast-proliferating cells with glioma stem cell characteristics. On the third day of TMZ treatment, some cells show nucleus structure damage, which are chemoradiation-sensitive cells. ZEB1 refers to zinc finger E-box-binding homeobox 1; DAPI refers to 4', 6-diamidino-2-phenylindole; and CTV refers to a cell proliferation fluorescent tracer. This figure was adapted from the Ref. [41].

    图 10  扩散峰度随扩散时间的变化曲线示意图, 其中, 在较短的扩散时间下, 扩散峰度随扩散时间延长而上升, 其反映了细胞内水分子扩散受微结构的影响, 在较长的扩散时间下, 系统达到“粗粒化”, 扩散峰度随扩散时间下降, 其反映了水分子跨膜交换的信息. 此时, 交换时间$ {\tau }_{{\mathrm{e}}{\mathrm{x}}ex} $可利用图中公式对下降部分拟合得到

    Fig. 10.  The schematic diagram of the change in diffusion kurtosis with diffusion time. At shorter diffusion times, the diffusion kurtosis increases with the diffusion time, reflecting the intra-compartmental microstructural effects. At longer diffusion times, the system reaches 'coarse-graining, ' and the diffusion kurtosis decreases with diffusion time, reflecting information about transmembrane water exchange. At this point, the exchange time ($ {\tau }_{{\mathrm{e}}{\mathrm{x}}} $) can be fitted from the decreasing part of the K(t) curve using the formula shown in the figure.

    图 9  单扩散梯度和双扩散梯度编码的序列示意图 (a) SDE序列示意图, 在SDE中, 可以使用自旋回波或者受激回波进行水分子交换过程测量, 与自旋回波相比, 受激回波技术允许使用更长的混合时间, 而不会增加TE, 两个扩散梯度开始的时间间隔为Δ, δ为扩散梯度的持续时间, G为扩散梯度的强度; (b) DDE序列示意图. 两对扩散梯度的参数用下标1和2区分, 并由混合时间(mixing time, tm)隔开

    Fig. 9.  The schematic diagram of SDE and DDE sequence: (a) The schematic diagram of SDE sequence, in SDE, either spin echo or stimulated echo can be employed to measure the water molecule exchange process, compared to spin echo, the stimulated echo allows for longer mixing time (tm) without increasing the echo time (TE), Δ is the time interval between the two diffusion gradient, δ is the duration of the diffusion gradient, and G is the intensity of the diffusion gradient; (b) the schematic diagram of DDE sequence, the parameters of the two pairs of diffusion gradients are distinguished by subscripts 1 and 2, and separated by the mixing time (tm).

    图 11  FEXI序列示意图及其测量双组分系统中水分子跨膜交换的原理简图, 在FEXI序列的过滤模块中, 通过扩散梯度的施加可“过滤”系统扩散率快的水分子信号, 在交换模块, 两个组分的水分子发生跨膜交换引起系统表观扩散率ADC的恢复并在检测模块进行测量

    Fig. 11.  The schematic diagram of the FEXI sequence and its principle for measuring transmembrane water exchange in a two-component system. In the filter block, the application of diffusion gradients filters out the signals of water molecules with fast diffusivity in the system. In the mixing block, water exchange between the two components leads to the recovery of the system's apparent diffusion coefficient (ADC), which is measured in the detection block.

    图 12  基于不同磁共振测量方法获取的不同生物样本的水分子跨膜交换速率或者交换时间, 图片改自参考文献[125]

    Fig. 12.  Transcytolemmal water-exchange rate or exchange time of different biological samples obtained using various MRI or NMR methods. This figure was adapted from the Ref. [125].

  • [1]

    Wolff S D, Balaban R S 1989 Magn. Reson. Med. 10 135Google Scholar

    [2]

    Henkelman R M, Stanisz G J, Graham S J 2001 NMR Biomed. 14 57Google Scholar

    [3]

    Forsén S, Hoffman R A 1963 J. Chem. Phys. 39 2892Google Scholar

    [4]

    Ward K M, Aletras A H, Balaban R S 2000 J. Magn. Reson. 143 79Google Scholar

    [5]

    Verkman A S, van Hoek A N, Ma T, Frigeri A, Skach W R, Mitra A, Tamarappoo B K, Farinas J 1996 Am. J. Physiol. 270 C12Google Scholar

    [6]

    Waldeck A R, Kuchel P W, Lennon A J, Chapman B E 1997 Prog. Nucl. Magn. Reson. Spectrosc. 30 39Google Scholar

    [7]

    Filippi M, Rocca M A 2004 J. Neuroimaging. 14 303Google Scholar

    [8]

    York E N, Thrippleton M J, Meijboom R, Hunt D P J, Waldman A D 2022 Brain Commun. 4 fcac088Google Scholar

    [9]

    Zhou J, Payen J F, Wilson D A, Traystman R J, van Zijl P C M 2003 Nat. Med. 9 1085Google Scholar

    [10]

    Xu X, Yadav N N, Knutsson L, Hua J, Kalyani R, Hall E, Laterra J, Blakeley J, Strowd R, Pomper M, Barker P, Chan K W Y, Liu G, McMahon M T, Stevens R D, van Zijl P C M 2015 Tomography 1 105Google Scholar

    [11]

    Wang M Y, Hong X H, Chang C F, Li Q, Ma B, Zhang H, Xiang S N, Heo H Y, Zhang Y, Lee D H, Jiang S S, Leigh R, Koehler R C, van Zijl P C M, Wang J, Zhou J 2015 Magn. Reson. Med. 74 42Google Scholar

    [12]

    Harston G W J, Tee Y K, Blockley N, Okell T W, Thandeswaran S, Shaya G, Sheerin F, Cellerini M, Payne S, Jezzard P, Chappell M, Kennedy J 2015 Brain 138 36Google Scholar

    [13]

    Ling W, Regatte R R, Navon G, Jerschow A 2008 Proc. Natl. Acad. Sci. U. S. A. 105 2266Google Scholar

    [14]

    Li X, Kuo D, Theologis A, Carballido-Gamio J, Stehling C, Link T M, Ma C B, Majumdar S 2011 Radiology 258 505Google Scholar

    [15]

    Prescott D M, Zeuthen E 1953 Acta Physiol. Scand. 28 77Google Scholar

    [16]

    Ye R, Verkman A S 1989 Biochemistry 28 824Google Scholar

    [17]

    Zhou Z Y, Zhan J S, Cai Q Y, Xu F Q, Chai R C, Lam K, Luan Z, Zhou G Y, Tsang S, Kipp M, Han W L, Zhang R, Yu A C H 2022 Cells 11 2564Google Scholar

    [18]

    Ochoa-de la Paz L D, Gulias-Cañizo R 2022 Front. Cell. Neurosci. 16 1

    [19]

    Kadry H, Noorani B, Cucullo L 2020 Fluids. Barriers. CNS. 17 1Google Scholar

    [20]

    MacAulay N, Keep R F, Zeuthen T 2022 Fluids. Barriers. CNS. 19 1Google Scholar

    [21]

    Klostranec J M, Vucevic D, Bhatia K D, Kortman H G J, Krings T, Murphy K P, TerBrugge K G, Mikulis D J 2021 Radiology 301 502Google Scholar

    [22]

    MacAulay N 2021 Nat. Rev. Neurosci. 22 326Google Scholar

    [23]

    Bai R L, Springer C S, Plenz D, Basser P J, Springer Jr. C S, Plenz D, Basser P J 2018 Magn. Reson. Med. 79 3207Google Scholar

    [24]

    Hladky S B, Barrand M A 2016 Fluids. Barriers. CNS. 13 1

    [25]

    Landis C S, Li X, Telang F W, Molina P E, Palyka I, Vetek G, Springer C S 1999 Magn. Reson. Med. 42 467Google Scholar

    [26]

    Wang J, Fernández-Seara M A, Wang S, St Lawrence K S 2007 J. Cereb. Blood Flow Metab. 27 839Google Scholar

    [27]

    Shao X, Ma S J, Casey M, D’Orazio L, Ringman J M, Wang D J J 2019 Magn. Reson. Med. 81 3065Google Scholar

    [28]

    Bai R L, Li Z Q, Sun C L, Hsu Y C, Liang H, Basser P 2020 NeuroImage 219 117039Google Scholar

    [29]

    Lin Z X, Li Y, Su P, Mao D, Wei Z L, Pillai J J, Moghekar A, van Osch M, Ge Y L, Lu H Z 2018 Magn. Reson. Med. 80 1507Google Scholar

    [30]

    Dickie B R, Parker G J M, Parkes L M 2020 Prog. Nucl. Magn. Reson. Spectrosc. 116 19Google Scholar

    [31]

    Ruggiero M R, Baroni S, Pezzana S, Ferrante G, Geninatti Crich S, Aime S 2018 Angew. Chem. Int. Ed. 57 7468Google Scholar

    [32]

    Li X, Huang W, Morris E A, Tudorica L A, Seshan V E, Rooney W D, Tagge I, Wang Y, Xu J G, Springer C S 2008 Proc. Natl. Acad. Sci. U. S. A. 105 17937Google Scholar

    [33]

    Kim S, Quon H, Loevner L A, Rosen M A, Dougherty L, Kilger A M, Glickson J D, Poptani H 2007 J. Magn. Reson. Imaging 26 1607Google Scholar

    [34]

    Chawla S, Loevner L A, Kim S G, Hwang W-T, Wang S, Verma G, Mohan S, LiVolsi V, Quon H, Poptani H 2018 Am. J. Neuroradiol. 39 138Google Scholar

    [35]

    Papadopoulos M C, Verkman A S 2007 Pediatr. Nephrol. 22 778Google Scholar

    [36]

    Conlon T, Outhred R 1972 BBA - Biomembr. 288 354Google Scholar

    [37]

    Chien D Y, Macey R I 1977 Biochim. Biophys. Acta BBA - Biomembr. 464 45Google Scholar

    [38]

    Morariu V V, Benga G 1977 Biochim. Biophys. Acta BBA - Biomembr. 469 301Google Scholar

    [39]

    Conlon T, Outhred R 1978 Biochim. Biophys. Acta 511 408Google Scholar

    [40]

    Gianolio E, Ferrauto G, Di Gregorio E, Aime S 2016 Biochim. Biophys. Acta - Biomembr. 1858 627Google Scholar

    [41]

    Jia Y H, Xu S C, Han G X, Wang B, Wang Z J, Lan C J, Zhao P, Gao M, Zhang Y, Jiang W H, Qiu B Y, Liu R, Hsu Y C, Sun Y, Liu C, Liu Y C, Bai R L 2023 Nat. Biomed. Eng. 7 236

    [42]

    Yang D M, Huettner J E, Bretthorst G L, Neil J J, Garbow J R, Ackerman J J H 2018 Magn. Reson. Med. 79 1616Google Scholar

    [43]

    Hazlewood C F, Nichols B L, Chamberlain N F 1969 Nature 222 747Google Scholar

    [44]

    Hazlewood C F 1985 Water and Ions in Biological Systems (Boston, MA: Springer US) pp9-15

    [45]

    Belton P S, Ratcliffe R G 1985 Prog. Nucl. Magn. Reson. Spectrosc. 17 241Google Scholar

    [46]

    Belton P S, Jackson R R, Packer K J 1972 BBA - Gen. Subj. 286 16Google Scholar

    [47]

    McConnell H M 1958 J. Chem. Phys. 28 430Google Scholar

    [48]

    Hazlewood C F, Chang D C, Nichols B L, Woessner D E 1974 Biophys. J. 14 583Google Scholar

    [49]

    Sobol W T, Cameron I G, Inch W R, Pintar M M 1986 Biophys. J. 50 181Google Scholar

    [50]

    Sobol W T, Pintar M M 1987 Magn. Reson. Med. 4 537Google Scholar

    [51]

    Herbst M D, Goldstein J H 1984 J. Magn. Reson. 60 299

    [52]

    Mulkern R V, Bleier A R, Adzamli I K, Spencer R G, Sandor T, Jolesz F A 1989 Biophys. J. 55 221Google Scholar

    [53]

    Landis C S, Li X, Telang F W, Molina P E, Palyka I 1999 Magn. Reson. Med. 42 467Google Scholar

    [54]

    Tofts P S, Brix G, Buckley D L, Evelhoch J L, Henderson E, Knopp M V, Larsson H B W, Lee T Y, Mayr N A, Parker G J M, Port R E, Taylor J, Weisskoff R M 1999 J. Magn. Reson. Imaging 10 223Google Scholar

    [55]

    Choyke P L, Dwyer A J, Knopp M V. 2003 J. Magn. Reson. Imaging 17 509Google Scholar

    [56]

    Patlak C S, Blasberg R G, Fenstermacher J D 1983 J. Cereb. Blood Flow Metab. 3 1Google Scholar

    [57]

    Tofts P S 1997 J. Magn. Reson. Imaging 7 91Google Scholar

    [58]

    Landis C S, Li X, Telang F W, Coderre J A, Micca P L, Rooney W D, Latour L L, Vétek G, Pályka I, Springer C S 2000 Magn. Reson. Med. 44 563Google Scholar

    [59]

    Springer C S, Rooney W D, Li X 2002 Magn. Reson. Med. 47 422Google Scholar

    [60]

    Zhou R, Pickup S, Yankeelov T E, Springer C S, Glickson J D 2004 Magn. Reson. Med. 52 248Google Scholar

    [61]

    Yankeelov T E, Rooney W D, Li X, Springer C S 2003 Magn. Reson. Med. 50 1151Google Scholar

    [62]

    Li X, Rooney W D, Springer C S 2005 Magn. Reson. Med. 54 1351Google Scholar

    [63]

    Huang W, Li X, Morris E A, Tudorica L A, Seshan V E, Rooney W D, Tagge I, Wang Y, Xu J G, Springer C S 2008 Proc. Natl. Acad. Sci. U. S. A. 105 17943Google Scholar

    [64]

    Li X, Huang W, Yankeelov T E, Tudorica A, Rooney W D, Springer C S 2005 Magn. Reson. Med. 53 724Google Scholar

    [65]

    Lowry M, Zelhof B, Liney G P, Gibbs P, Pickles M D, Turnbull L W 2009 Invest. Radiol. 44 577Google Scholar

    [66]

    Li X, Priest R A, Woodward W J, Tagge I J, Siddiqui F, Huang W, Rooney W D, Beer T M, Garzotto M G, Springer C S 2013 Magn. Reson. Med. 69 171Google Scholar

    [67]

    Kim S, Loevner L A, Quon H, Kilger A, Sherman E, Weinstein G, Chalian A, Poptani H 2010 Am. J. Neuroradiol. 31 262Google Scholar

    [68]

    Yankeelov T E, Rooney W D, Huang W, Dyke J P, Li X, Tudorica A, Lee J H, Koutcher J A, Springer C S 2005 NMR Biomed. 18 173Google Scholar

    [69]

    Zhang Y, Poirier-Quinot M, Springer C S, Balschi J A 2011 Biophys. J. 101 2833Google Scholar

    [70]

    Springer C S, Li X, Tudorica L A, Oh K Y, Roy N, Chui S Y C, Naik A M, Holtorf M L, Afzal A, Rooney W D, Huang W 2014 NMR Biomed. 27 760Google Scholar

    [71]

    Bai R L, Springer C S, Plenz D, Basser P J, Springer Jr. C S, Plenz D, Basser P J 2018 Magn. Reson. Med. 79 3207Google Scholar

    [72]

    Rooney W D, Li X, Sammi M K, Bourdette D N, Neuwelt E A, Springer C S 2015 NMR Biomed. 28 607Google Scholar

    [73]

    Springer Jr. C S, Springer C S 2018 J. Magn. Reson. 291 110Google Scholar

    [74]

    Springer C S, Baker E M, Li X, Moloney B, Pike M M, Wilson G J, Anderson V C, Sammi M K, Garzotto M G, Kopp R P, Coakley F V, Rooney W D, Maki J H 2022 NMR Biomed. 36 1

    [75]

    Stejskal E O, Tanner J E 1965 J. Chem. Phys. 42 288Google Scholar

    [76]

    Cory D G, Garroway A N, Miller J B 1990 J. Am. Chem. Soc. 199 105

    [77]

    Kärger J 1969 Ann. Phys. 24 1

    [78]

    Kärger J 1985 Adv. Colloid Interface Sci. 23 129Google Scholar

    [79]

    Kärger J, Pfeifer H, Heink W 1988 Adv. Magn. Opt. Reson. 12 1Google Scholar

    [80]

    Moutal N, Nilsson M, Topgaard D, Grebenkov D 2018 J. Magn. Reson. 296 72Google Scholar

    [81]

    Andrasko J 1976 Biochim. Biophys. Acta BBA - Gen. Subj. 428 304Google Scholar

    [82]

    Neuman C H 1974 J. Chem. Phys. 60 4508Google Scholar

    [83]

    Tanner J E 1978 J. Chem. Phys. 69 1748Google Scholar

    [84]

    Tanner J E 1983 Arch. Biochem. Biophys. 224 416Google Scholar

    [85]

    Stanisz G J, Szafer A, Wright G A, Henkelman R M 1997 Magn. Reson. Med. 37 103Google Scholar

    [86]

    Pfeuffer J, Flögel U, Leibfritz D 1998 NMR Biomed. 11 11Google Scholar

    [87]

    Tanner J E, Stejskal E O 1968 J. Chem. Phys. 49 1768Google Scholar

    [88]

    Shi D W, Liu F, Li S S, Chen L, Jiang X Y, Gore J C, Zheng Q S, Guo H, Xu J Z 2024 J. Magn. Reson. 367 107760Google Scholar

    [89]

    Jensen J H, Helpern J A, Ramani A, Lu H, Kaczynski K 2005 Magn. Reson. Med. 53 1432Google Scholar

    [90]

    Fieremans E, Novikov D S, Jensen J H, Helpern J A 2010 NMR Biomed. 23 711Google Scholar

    [91]

    Zhang J, Lemberskiy G, Moy L, Fieremans E, Novikov D S, Kim S G 2021 NMR Biomed. 34 1

    [92]

    Zhang J, Lemberskiy G, Moy L, Fieremans E, Novikov D S, Kim S G 2021 NMR Biomed. 34 1

    [93]

    Jelescu I O, de Skowronski A, Geffroy F, Palombo M, Novikov D S 2022 NeuroImage 256 119277Google Scholar

    [94]

    Uhl Q, Pavan T, Molendowska M, Jones D K, Palombo M, Jelescu I O 2024 Imaging Neurosci. 2 1

    [95]

    Fieremans E, Novikov D S, Jensen J H, Helpern J A 2010 NMR Biomed. 23 711Google Scholar

    [96]

    Fieremans E, Burcaw L M, Lee H H, Lemberskiy G, Veraart J, Novikov D S 2016 NeuroImage 129 414Google Scholar

    [97]

    Lee H H, Papaioannou A, Novikov D S, Fieremans E 2020 NeuroImage 222 1

    [98]

    Mougel E, Valette J, Palombo M 2024 Imaging Neurosci. 2 1

    [99]

    Callaghan P T, Furó I 2004 J. Chem. Phys. 120 4032Google Scholar

    [100]

    Qiao Y, Galvosas P, Adalsteinsson T, Schönhoff M, Callaghan P T 2005 J. Chem. Phys. 122 214912Google Scholar

    [101]

    Galvosas P, Qiao Y, Schönhoff M, Callaghan P T 2007 Magn. Reson. Imaging 25 497Google Scholar

    [102]

    Cai T X, Benjamini D, Komlosh M E, Basser P J, Williamson N H 2018 J. Magn. Reson. 297 17Google Scholar

    [103]

    Williamson N H, Ravin R, Benjamini D, Merkle H, Falgairolle M, O’Donovan M J, Blivis D, Ide D, Cai T X, Ghorashi N S, Bai R L, Basser P J 2019 eLife 8 e51101Google Scholar

    [104]

    Breen-Norris J O, Siow B, Walsh C, Hipwell B, Hill I, Roberts T, Hall M G, Lythgoe M F, Ianus A, Alexander D C, Walker-Samuel S 2020 Magn. Reson. Med. 84 1543Google Scholar

    [105]

    Cai T X, Williamson N H, Ravin R, Basser P J 2022 Front. Phys. 10 1

    [106]

    Cheng Z, Hu S, Han G X, Fang K, Jin X Y, Ordinola A, Özarslan E, Bai R L 2023 J. Chem. Phys. 159 054201Google Scholar

    [107]

    Ramadan S, Mountford C 2006 Proc Intl Soc Mag Reson Med 14 1621

    [108]

    Ramadan S 2009 Magn. Reson. Insights 3 3504Google Scholar

    [109]

    Price W S, Barzykin A V, Hayamizu K, Tachiya M 1998 Biophys. J. 74 2259Google Scholar

    [110]

    Åslund I, Nowacka A, Nilsson M, Topgaard D 2009 J. Magn. Reson. 200 291Google Scholar

    [111]

    Goldman M, Shen L 1966 Phys. Rev. 144 321Google Scholar

    [112]

    Voda M A, Demco D E, Voda A, Schauber T, Adler M, Dabisch T, Adams A, Baias M, Blümich B 2006 Macromolecules 39 4802Google Scholar

    [113]

    Åslund I, Nowacka A, Nilsson M, Topgaard D 2009 J. Magn. Reson. 200 291Google Scholar

    [114]

    Lasič S, Nilsson M, Lätt J, Ståhlberg F, Topgaard D 2011 Magn. Reson. Med. 66 356Google Scholar

    [115]

    Nilsson M, Lätt J, Van Westen D, Brockstedt S, Lasič S, Ståhlberg F, Topgaard D 2013 Magn. Reson. Med. 69 1572Google Scholar

    [116]

    Lasič S, Oredsson S, Partridge S C, Saal L H, Topgaard D, Nilsson M, Bryskhe K 2016 NMR Biomed. 29 631Google Scholar

    [117]

    Sønderby C K, Lundell H M, Søgaard L V, Dyrby T B 2014 Magn. Reson. Med. 72 756Google Scholar

    [118]

    Li Z Q, Pang Z, Cheng J, Hsu Y C, Sun Y, Özarslan E, Bai R L 2022 NeuroImage 247 118831Google Scholar

    [119]

    Shin H G, Li X, Heo H Y, Knutsson L, Szczepankiewicz F, Nilsson M, van Zijl P C M 2024 Magn. Reson. Med. 92 660Google Scholar

    [120]

    Ludwig D, Laun F B, Ladd M E, Bachert P, Kuder T A 2021 Magn. Reson. Med. 86 677Google Scholar

    [121]

    Khateri M, Reisert M, Sierra A, Tohka J, Kiselev V G 2022 NMR Biomed. 35 e4804Google Scholar

    [122]

    Ordinola A, Özarslan E, Bai R L, Herberthson M 2024 J. Chem. Phys. 160 084701Google Scholar

    [123]

    Cai T X, Benjamini D, Komlosh M E, Basser P J, Williamson N H 2018 J. Magn. Reson. 297 17Google Scholar

    [124]

    Tian X, Li H, Jiang X Y, Xie J P, Gore J C, Xu J Z 2017 J. Magn. Reson. 275 29Google Scholar

    [125]

    Li C, Fieremans E, Novikov D S, Ge Y, Zhang J 2023 Magn. Reson. Med. 89 1441Google Scholar

    [126]

    Li Z Q, Liang C, He Q, Feiweier T, Hsu Y C, Li J, Bai R L 2025 Magn. Reson. Med. 93 2357Google Scholar

    [127]

    Jelescu I O, de Skowronski A, Geffroy F, Palombo M, Novikov D S 2022 NeuroImage 256 119277Google Scholar

    [128]

    Olesen J L, Østergaard L, Shemesh N, Jespersen S N 2022 NeuroImage 251

    [129]

    Quirk J D, Bretthorst G L, Duong T Q, Snyder A Z, Springer Jr. C S, Ackerman J J H, Neil J J 2003 Magn. Reson. Med. 50 493Google Scholar

    [130]

    Pfeuffer J, Provencher S W, Gruetter R 1999 Magma Magn. Reson. Mater. Phys. Biol. Med. 8 98

    [131]

    Meier C, Dreher W, Leibfritz D 2003 Magn. Reson. Med. 50 510Google Scholar

    [132]

    Fang K, Wang Z J, Li Z Q, Han G X, Cheng Z W, Chen Z, Lan C, Zhang Y, Zhao P, Jin X Y, Liu Y C, Bai R L 2021 J. Magn. Reson. Imaging 53 1898Google Scholar

    [133]

    Fang K, Wang Z J, Xia Q, Liu Y C, Wang B, Cheng Z W, Cheng J, Jin X Y, Bai R L, Li L J 2024 IEEE Trans. Biomed. Eng. 71 780Google Scholar

    [134]

    Nedjati-Gilani G L, Schneider T, Hall M G, Cawley N, Hill I, Ciccarelli O, Drobnjak I, Wheeler-Kingshott C A M G, Alexander D C 2017 NeuroImage 150 119Google Scholar

    [135]

    Hill I, Palombo M, Santin M, Branzoli F, Philippe A C, Wassermann D, Aigrot M S, Stankoff B, Baron Van Evercooren A, Felfli M, Langui D, Zhang H, Lehericy S, Petiet A, Alexander D C, Ciccarelli O, Drobnjak I 2021 NeuroImage 224 117425Google Scholar

  • [1] 赵地, 赵莉芝, 甘永进, 覃斌毅. 基于支撑先验与深度图像先验的无预训练磁共振图像重建方法. 物理学报, doi: 10.7498/aps.71.20211761
    [2] 向鹏程, 蔡聪波, 王杰超, 蔡淑惠, 陈忠. 基于深度神经网络的时空编码磁共振成像超分辨率重建方法. 物理学报, doi: 10.7498/aps.71.20211754
    [3] 蒋川东, 王琦, 杜官峰, 易晓峰, 田宝凤. 地面核磁偏共振响应特征与复包络反演方法. 物理学报, doi: 10.7498/aps.67.20171464
    [4] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, doi: 10.7498/aps.67.20180754
    [5] 杜晓纪, 王为民, 兰贤辉, 李超. 1.5 T关节磁共振成像超导磁体的设计、制作与测试. 物理学报, doi: 10.7498/aps.66.248401
    [6] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术. 物理学报, doi: 10.7498/aps.66.150302
    [7] 吴量, 陈方, 黄重阳, 丁国辉, 丁义明. 基于改进非线性拟合的核磁共振T2谱多指数反演. 物理学报, doi: 10.7498/aps.65.107601
    [8] 胡洋, 王秋良, 李毅, 朱旭晨, 牛超群. 基于边界元方法的超导核磁共振成像设备高阶轴向匀场线圈优化算法. 物理学报, doi: 10.7498/aps.65.218301
    [9] 田宝凤, 周媛媛, 王悦, 李振宇, 易晓峰. 基于独立成分分析的全波核磁共振信号噪声滤除方法研究. 物理学报, doi: 10.7498/aps.64.229301
    [10] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制. 物理学报, doi: 10.7498/aps.64.167601
    [11] 方晟, 吴文川, 应葵, 郭华. 基于非均匀螺旋线数据和布雷格曼迭代的快速磁共振成像方法. 物理学报, doi: 10.7498/aps.62.048702
    [12] 李新, 肖立志, 刘化冰, 张宗富, 郭葆鑫, 于慧俊, 宗芳荣. 优化重聚脉冲提高梯度场核磁共振信号强度. 物理学报, doi: 10.7498/aps.62.147602
    [13] 倪志鹏, 王秋良, 严陆光. 短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法. 物理学报, doi: 10.7498/aps.62.020701
    [14] 张国庆, 杜晓纪, 赵玲, 宁飞鹏, 姚卫超, 朱自安. 基于0—1整数线性规划的自屏蔽磁共振成像超导磁体设计. 物理学报, doi: 10.7498/aps.61.228701
    [15] 姚淅伟, 曾碧榕, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构. 物理学报, doi: 10.7498/aps.59.6837
    [16] 李绍, 任育峰, 王宁, 田野, 储海峰, 黎松林, 陈莺飞, 李洁, 陈赓华, 郑东宁. 利用高温超导直流量子干涉器件进行10-6 T量级磁场下核磁共振的研究. 物理学报, doi: 10.7498/aps.58.5744
    [17] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟. 物理学报, doi: 10.7498/aps.57.550
    [18] 潘克家, 陈 华, 谭永基. 基于差分进化算法的核磁共振T2谱多指数反演. 物理学报, doi: 10.7498/aps.57.5956
    [19] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, doi: 10.7498/aps.54.1431
    [20] 张必达, 王卫东, 宋枭禹, 俎栋林, 吕红宇, 包尚联. 磁共振现代射频脉冲理论在非均匀场成像中的应用. 物理学报, doi: 10.7498/aps.52.1143
计量
  • 文章访问数:  285
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-12
  • 修回日期:  2025-04-12
  • 上网日期:  2025-04-17

/

返回文章
返回