-
Here introduced is an optimization design method for actively shielded magnetic resonance image (MRI) superconducting magnet based on the integer linear programming. The feasible coil space is densely divided by an array of candidate squares and, its size is determined by the size of actual superconducting wire. The 0—1 integer linear programming method is adopted to obtain the initial wire concentrated region of coils by comprehensivly considering superconductivity wire consumption, magnetic field intensity inside the superconductors, homogeneity in imaging region and the range of leak fields. Then by reasonably adjusting the position and section size of the wire concentrated region for the next calculation, the final MRI superconducting magnet structure with rectangular section coils is obtained. The method is based on the full size of the superconducting wire, which makes the MRI superconducting magnet design more feasible and has greater advantage for the actual fabriction. With different constraints, the method can also be used for other superconducting magnet design. Finally an example of the MRI magnet optimal design is presented.
-
Keywords:
- MRI /
- superconducting magnet design /
- 0—1 Integer linear programming
[1] Lvovsky, Jarvis P 2005 IEEE Trans. Applied Superconductivity 15 1317
[2] Shaw N R, Ansorge R E 2002 IEEE Trans. Applied Superconductivity 12 733
[3] Viktor Vegh, Tieng Q M, Bpereton I M 2009 Concepts in Magnetic Resonance PartB 35B(3) 180
[4] Noguchi S, Ishiyama A 1996 IEEE Trans. Magn 32 2655
[5] Felipe Campelbo, So Noguchi, Hajime Igarashi 2006 IEEE Trans. Applied Superconductivity 16 1316
[6] Gautam Sinha, Ravishankar Sundararaman, Gurnam Singh 2008 IEEE Trans. Magn 44 2351
[7] Xu H, Conolly S M, Scoot G C, Albert Macovski 2000 IEEE Trans. Magn 36 476
[8] Wang C Z, Wang Q L, Zhang Q 2010 IEEE Trans. Applied Superconductivity 20 706
[9] Wang Q L, Xu G X, Dai Y M, Zhao B Z, Yan L G, Keeman Kim 2009 IEEE Trans. Applied Superconductivity 19 2289
[10] Wu W, He Y, Ma L Z, Huang W X, Xia J W 2009 Chin. Phys. C 33 1
[11] Wang Q L 2008 The Science of High Magnetic Field Superconducting Magnet (Beijing: Science Press) p54-55 (in China) [王秋良 2008 高磁场超导磁体科学(北京:科学出版社) 第54—55页]
[12] Garrett M W 1967 J. Appl. Phys 38 2563
[13] Cheng YCN, Brown RW, Thompson MR, Eagan TP, Shvartsman SM 2004 IEEE Trans. Applied Superconductivity 14 2008
-
[1] Lvovsky, Jarvis P 2005 IEEE Trans. Applied Superconductivity 15 1317
[2] Shaw N R, Ansorge R E 2002 IEEE Trans. Applied Superconductivity 12 733
[3] Viktor Vegh, Tieng Q M, Bpereton I M 2009 Concepts in Magnetic Resonance PartB 35B(3) 180
[4] Noguchi S, Ishiyama A 1996 IEEE Trans. Magn 32 2655
[5] Felipe Campelbo, So Noguchi, Hajime Igarashi 2006 IEEE Trans. Applied Superconductivity 16 1316
[6] Gautam Sinha, Ravishankar Sundararaman, Gurnam Singh 2008 IEEE Trans. Magn 44 2351
[7] Xu H, Conolly S M, Scoot G C, Albert Macovski 2000 IEEE Trans. Magn 36 476
[8] Wang C Z, Wang Q L, Zhang Q 2010 IEEE Trans. Applied Superconductivity 20 706
[9] Wang Q L, Xu G X, Dai Y M, Zhao B Z, Yan L G, Keeman Kim 2009 IEEE Trans. Applied Superconductivity 19 2289
[10] Wu W, He Y, Ma L Z, Huang W X, Xia J W 2009 Chin. Phys. C 33 1
[11] Wang Q L 2008 The Science of High Magnetic Field Superconducting Magnet (Beijing: Science Press) p54-55 (in China) [王秋良 2008 高磁场超导磁体科学(北京:科学出版社) 第54—55页]
[12] Garrett M W 1967 J. Appl. Phys 38 2563
[13] Cheng YCN, Brown RW, Thompson MR, Eagan TP, Shvartsman SM 2004 IEEE Trans. Applied Superconductivity 14 2008
计量
- 文章访问数: 9242
- PDF下载量: 628
- 被引次数: 0