搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于宽带吸波体的微带天线雷达散射截面缩减设计

李文惠 张介秋 屈绍波 袁航盈 沈杨 王冬骏 过勐超

引用本文:
Citation:

基于宽带吸波体的微带天线雷达散射截面缩减设计

李文惠, 张介秋, 屈绍波, 袁航盈, 沈杨, 王冬骏, 过勐超

Radar cross section reduction of microstrip antenna based on wide-band metamaterial absorber

Li Wen-Hui, Zhang Jie-Qiu, Qu Shao-Bo, Yuan Hang-Ying, Shen Yang, Wang Dong-Jun, Guo Meng-Chao
PDF
导出引用
  • 利用加载集总电阻的方式设计出一种极化稳定且宽入射角的宽带超材料吸波体(wide-band metamaterial absorber, WBMA), 在平面波垂直入射时, 其吸波半波功率带宽达12.7 GHz, 吸波率大于90%的带宽达10.42 GHz, 峰值吸波率达99.9%. 将其与微带天线共基板共接地板的方式加载, 制备出WBMA微带天线, 实现了天线宽频域内雷达散射截面(radar cross section, RCS)大幅缩减. 仿真与实测结果表明: 将WBMA加载于微带天线后, 天线的前向增益提高了0.53 dB, 整体辐射特性基本保持不变; 在不同极化波下, 天线的工作频带带内和带外等宽频域(6.95-17.91 GHz)内的单站RCS缩减大于3 dB以上, 最大缩减值达21.2 dB; 在天线的中心频点8 GHz处± 48°的宽角域内, 双站RCS缩减效果明显, 很好地实现了天线的宽频域大角度的隐身设计.
    We design a wide-band metamaterial absorber (WBMA) with stable polarization and wide incident angle by loading a lumped resistance. The full-width at half-maximum of the absorber is 98%, the bandwidth of absorbing rate of more than 90% reaches 10.42 GHz, and the peak absorbing rate is 99.9% in the normal wave incidence. Loading the WBMA around the microstrip antenna by sharing the same substrate and ground plane, we fabricate the WBMA antenna, whose radar cross section (RCS) sharply decreases in the wide frequency range. Simulation and experimental results show that the antenna's radiation pattern is almost unchanged: just only the former gain improves 0.53 dB after loading the WBMA. Under different polarized waves, the antenna's monostatic RCS reduction is more than 3 dB within the working frequency band and beyond the working frequency band (6.95-17.91 GHz), the maximum value is 21.2 dB. The bistatic RCS decreases significantly from -48° to 48° at the middle working frequency (8 GHz), which well achieves the antenna stealth at the wide-band frequency and wide angle.
    • 基金项目: 国家自然科学基金(批准号: 61331005, 61471388, 11204378, 11274389, 11304393, 61302023)、中国博士后科学基金(批准号: 2013M532131, 2013M532221)、航空科学基金(批准号: 20123196015, 20132796018)和陕西省基础研究计划 (批准号: 2013JM6005)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 61331005, 61471388, 11204378, 11274389, 11304393, 61302023), the China Postdoctoral Science Foundation (Grant Nos. 2013M532131, 2013M532221), the Aviation Science Foundation of China (Grant Nos. 20123196015, 20132796018), and the Fundamental Research Project of Shaanxi Province, China (Grant No. 2013JM6005).
    [1]

    Engheta N 2002 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting San Antonio, USA, June 12-16, 2002 p16

    [2]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [3]

    Gu C, Qu S B, Pei Z B, Xu Z 2011 Chin. Phys. B 20 037801

    [4]

    Ghosh S, Bhattacharyya S, Kumar V S 2014 J. Appl. Phys. 115 104503

    [5]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [6]

    Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403

    [7]

    Li H, Li H Y, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909

    [8]

    Wang W J, Wang J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲 2014 物理学报 63 174101]

    [9]

    Won H C, Jae H S, Tae H S, Woo Y L, Won J L, Chun G K 2014 Electron. Lett. 50 292

    [10]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [11]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas. Propag. 62 945

    [12]

    Liu Y H, Zhao X P 2014 IEEE Anten. Wirel. Propag. Lett. 13 1473

    [13]

    Wang F W, Jiang W, Hong T, Xue H, Gong S X, Zhang Y Q 2014 IET Microw. Antennas Propag. 8 491

    [14]

    Yang S T, Ling H 2013 IEEE Anten. Wirel. Propag. Lett. 12 35

    [15]

    Zhang J, Liu K C, Zhang X F 1988 The Theory and Engineering of Microstrip Antenna (Beijing: National Denfence Industry Press) p2 (in Chinese) [张钧, 刘克诚, 张贤峄 1988 微带天线理论与工程(北京:国防工业出版社) 第2页]

    [16]

    Chen H Y, Hou X Y, Deng L J 2009 IEEE Anten. Wirel. Propag. Lett. 8 1231

    [17]

    Genovesi S, Costa F, Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2327

    [18]

    Costa F, Genovesi S, Monorchio A 2012 Progr. Electromagn. Res. 126 317

    [19]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q 2012 Acta Phys. Sin. 61 184101 (in Chinese) [刘涛, 曹祥玉, 高军, 郑秋容, 李文强 2012 物理学报 61 184101]

    [20]

    Miao Z L, Huang C, Zhao Q, Pu M B, Ma X L 2012 Microwave and Millimeter Wave Technology (ICMMT) International Conference Shenzhen, China, May 5-8, 2012 p1

    [21]

    Li S J, Cao X Y, Gao J, Liu T, Yang H H, Li W Q 2013 Acta Phys. Sin. 62 124101 (in Chinese) [李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强 2013 物理学报 62 124101]

    [22]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [23]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

  • [1]

    Engheta N 2002 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting San Antonio, USA, June 12-16, 2002 p16

    [2]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [3]

    Gu C, Qu S B, Pei Z B, Xu Z 2011 Chin. Phys. B 20 037801

    [4]

    Ghosh S, Bhattacharyya S, Kumar V S 2014 J. Appl. Phys. 115 104503

    [5]

    Avitzour Y, Urzhumov Y A, Shvets G 2009 Phys. Rev. B 79 045131

    [6]

    Shrekenhamer D, Chen W C, Padilla W J 2013 Phys. Rev. Lett. 110 177403

    [7]

    Li H, Li H Y, Zhou B, Shen X P, Cheng Q, Cui T J 2011 J. Appl. Phys. 110 014909

    [8]

    Wang W J, Wang J F, Yan M B, Lu L, Ma H, Qu S B, Chen H Y, Xu C L 2014 Acta Phys. Sin. 63 174101 (in Chinese) [王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲 2014 物理学报 63 174101]

    [9]

    Won H C, Jae H S, Tae H S, Woo Y L, Won J L, Chun G K 2014 Electron. Lett. 50 292

    [10]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu J, Gu W 2011 Chin. Phys. B 20 017801

    [11]

    Pan W B, Huang C, Chen P, Ma X L, Hu C G, Luo X G 2014 IEEE Trans. Antennas. Propag. 62 945

    [12]

    Liu Y H, Zhao X P 2014 IEEE Anten. Wirel. Propag. Lett. 13 1473

    [13]

    Wang F W, Jiang W, Hong T, Xue H, Gong S X, Zhang Y Q 2014 IET Microw. Antennas Propag. 8 491

    [14]

    Yang S T, Ling H 2013 IEEE Anten. Wirel. Propag. Lett. 12 35

    [15]

    Zhang J, Liu K C, Zhang X F 1988 The Theory and Engineering of Microstrip Antenna (Beijing: National Denfence Industry Press) p2 (in Chinese) [张钧, 刘克诚, 张贤峄 1988 微带天线理论与工程(北京:国防工业出版社) 第2页]

    [16]

    Chen H Y, Hou X Y, Deng L J 2009 IEEE Anten. Wirel. Propag. Lett. 8 1231

    [17]

    Genovesi S, Costa F, Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2327

    [18]

    Costa F, Genovesi S, Monorchio A 2012 Progr. Electromagn. Res. 126 317

    [19]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q 2012 Acta Phys. Sin. 61 184101 (in Chinese) [刘涛, 曹祥玉, 高军, 郑秋容, 李文强 2012 物理学报 61 184101]

    [20]

    Miao Z L, Huang C, Zhao Q, Pu M B, Ma X L 2012 Microwave and Millimeter Wave Technology (ICMMT) International Conference Shenzhen, China, May 5-8, 2012 p1

    [21]

    Li S J, Cao X Y, Gao J, Liu T, Yang H H, Li W Q 2013 Acta Phys. Sin. 62 124101 (in Chinese) [李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强 2013 物理学报 62 124101]

    [22]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [23]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

  • [1] 袁方, 毛瑞棋, 高冕, 郑月军, 陈强, 付云起. 幅相同调的吸波-对消雷达散射截面减缩超表面设计. 物理学报, 2022, 71(8): 084102. doi: 10.7498/aps.71.20212174
    [2] 郝彪, 杨宾锋, 高军, 曹祥玉, 杨欢欢, 李桐. 一种编码式低雷达散射截面超表面天线阵列设计. 物理学报, 2020, 69(24): 244101. doi: 10.7498/aps.69.20200978
    [3] 兰俊祥, 曹祥玉, 高军, 韩江枫, 刘涛, 丛丽丽, 王思铭. 一种新型的低散射微带天线阵设计. 物理学报, 2019, 68(3): 034101. doi: 10.7498/aps.68.20181708
    [4] 惠忆聪, 王春齐, 黄小忠. 基于电阻型频率选择表面的宽带雷达超材料吸波体设计. 物理学报, 2015, 64(21): 218102. doi: 10.7498/aps.64.218102
    [5] 吴晨骏, 程用志, 王文颖, 何博, 龚荣洲. 基于十字形结构的相位梯度超表面设计与雷达散射截面缩减验证. 物理学报, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [6] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [7] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [8] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [9] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [10] 郑月军, 高军, 曹祥玉, 郑秋容, 李思佳, 李文强, 杨群. 一种兼具宽带增益改善和宽带、宽角度低雷达散射截面的微带天线. 物理学报, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [11] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [12] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [13] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [14] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [15] 郭林燕, 杨河林, 李敏华, 高超嵩, 田原. 单方环结构左手材料微带天线. 物理学报, 2012, 61(1): 014102. doi: 10.7498/aps.61.014102
    [16] 张雪芹, 王均宏, 李铮. 微带阵列天线的时域散射特性. 物理学报, 2011, 60(5): 051301. doi: 10.7498/aps.60.051301
    [17] 保石, 罗春荣, 赵晓鹏. S波段超材料完全吸收基板微带天线. 物理学报, 2011, 60(1): 014101. doi: 10.7498/aps.60.014101
    [18] 朱忠奎, 罗春荣, 赵晓鹏. 一种新型的树枝状负磁导率材料微带天线. 物理学报, 2009, 58(9): 6152-6157. doi: 10.7498/aps.58.6152
    [19] 杨 锐, 谢拥军, 王 鹏, 杨同敏. 含有左手介质双层基底的亚波长谐振腔微带天线研究. 物理学报, 2007, 56(8): 4504-4508. doi: 10.7498/aps.56.4504
    [20] 武明峰, 孟繁义, 吴 群, 吴 健. 基于左手介质后向波特性的微带天线小型化研究. 物理学报, 2006, 55(12): 6368-6373. doi: 10.7498/aps.55.6368
计量
  • 文章访问数:  5288
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-20
  • 修回日期:  2014-10-26
  • 刊出日期:  2015-04-05

/

返回文章
返回