搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外差式偏振干涉成像光谱技术研究

才啟胜 黄旻 韩炜 丛麟骁 路向宁

引用本文:
Citation:

外差式偏振干涉成像光谱技术研究

才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁

Heterodyne polarization interference imaging spectroscopy

Cai Qi-Sheng, Huang Min, Han Wei, Cong Lin-Xiao, Lu Xiang-Ning
PDF
导出引用
  • 提出了一种新型的基于Savart偏光镜的外差式偏振干涉成像光谱技术,该技术在偏振干涉成像光谱仪中引入一对平行偏振光栅对,使其得到的干涉图频率与波数相关,具有了波数外差的特点,降低了干涉图频率,从而可利用较少的采样点数实现很高的光谱分辨率.对外差式偏振干涉成像光谱技术的基本原理进行了研究,详细分析了系统光程差、干涉图表达式、光谱分辨率以及光谱复原方法等.最后给出了外差式偏振干涉成像光谱仪的设计实例并进行了计算机仿真模拟,所复原的光谱与输入光谱曲线相符合,验证了方案的正确性.外差式偏振干涉成像光谱仪具有结构紧凑、光通量高、稳定性强、光谱分辨率高的特点,尤其适合超小型高稳定性、高探测灵敏度的高光谱探测应用.
    A novel heterodyne polarization interference imaging spectroscopy (HPⅡS) based on a Savart polariscope is proposed in this paper. The HPⅡS is modified by introducing a pair of parallel polarization gratings into the static polarization interference imaging spectrometer. Because of the introduced parallel polarization gratings, the lateral displacements of the two beams split by the Savart polariscope vary with wavenumber. The frequency of the interferogram obtained on the detector is related to wavenumber. Like the spatial heterodyne spectrometer where the two end mirrors in a Michelson interferometer are replaced with two matched diffraction gratings, the zero frequency of the interferogram generated in HPⅡS corresponds to a heterodyne wavenumber instead of the zero wavenumber in a non-heterodyne spectrometer. Due to the heterodyne characteristics, a high spectral resolution can be achieved using a small number of sampling points. In addition, there is no slit in HPⅡS and it is an imaging Fourier transform spectrometer that records a two-dimensional image of a scene superimposed with interference curves. It is a temporally and spatially combined modulated Fourier transform spectrometer and the interferogram of one point from the scene is generated by picking up the corresponding pixels from a sequence of images which are acquired by scanning the scene. As a true imaging spectrometer, HPⅡS also has high sensitivity and high signal-to-noise ratio. In this paper, the basic principle of HPⅡS is studied. The optical path difference produced by the Savart polariscope and the parallel polarization gratings is calculated. The interferogram expression, the spectral resolution, and the spectrum reconstruction method are elaborated. As the relationship between the frequency of the interferogram and the wavenumber of the incident light is nonlinear, the input spectrum can be recovered using Fourier transform combined with the method of stationary phase. Also, the matrix inversion method can be used to recover the input spectrum. Finally, a design example of HPⅡS is given. The interferogram is simulated, and the recovered spectrum shows good agreement with the input spectrum. In the design example, the spectral range is 16667-18182 cm-1(550-600 nm), and the number of sampling points is 500. The spectral resolution of HPⅡS is 6.06 cm-1, which is 12 times smaller than that in a non-heterodyne spectrometer with the same spectral range and sampling numbers. HPⅡS has the advantages of compact structure, high optical throughput, strong stability, and high spectral resolution. It is especially suitable for hyperspectral detection with ultra-small, high stability, and high sensitivity.
      通信作者: 才啟胜, caiqs@aoe.ac.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFC0201100)和国家自然科学基金(批准号:61640422)资助的课题.
      Corresponding author: Cai Qi-Sheng, caiqs@aoe.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFC0201100) and the National Natural Science Foundation of China (Grant No. 61640422).
    [1]

    Hashimoto M, Kawata S 1992 Appl. Opt. 31 6096

    [2]

    Padgett M J, Harvey A R, Duncan A J, Sibbett W 1994 Appl. Opt. 33 6035

    [3]

    Padgett M J, Harvey A R 1995 Rev. Sci. Instrum. 66 2807

    [4]

    Courtial J, Patterson B A, Harvey A R, Sibbett W, Padgett M J 1996 Appl. Opt. 35 6698

    [5]

    Smith W H, Hammer P D 1996 Appl. Opt. 35 2902

    [6]

    Rafert J B, Sellar R G, Blatt J H 1995 Appl. Opt. 34 7228

    [7]

    Zhang C M, Xiang L B, Zhao B C 2000 Proc. SPIE 4087 957

    [8]

    Zhang C M, Xiang L B, Zhao B C, Yuan X J 2002 Opt. Commun. 203 21

    [9]

    Zhang C M, Zhao B C, Xiang L B, Yang J F 2001 Acta Opt. Sin. 21 192(in Chinese)[张淳民, 赵葆常, 相里斌, 杨建峰2001光学学报21 192]

    [10]

    Dohi T, Suzuki T 1971 Appl. Opt. 10 1137

    [11]

    Roesler F L, Harlander J M 1990 Proc. SPIE 1318 234

    [12]

    Harlander J M, Roesler F L, Cardon J G, Englert C R, Conway R R 2002 Appl. Opt. 41 1343

    [13]

    Harlander J M, Roesler F L, Englert C R, Cardon J G, Conway R R, Brown C M, Wimperis J 2003 Appl. Opt. 42 2829

    [14]

    Cai Q S, Xiang L B, Du S S 2015 Opt. Commun. 355 239

    [15]

    Xiang L B, Cai Q S, Du S S 2015 Opt. Commun. 357 148

    [16]

    Kudenov M W, Miskiewicz M N, Escuti M J, Dereniak E L 2012 Opt. Lett. 37 4413

    [17]

    Oh C, Escuti M J 2008 Opt. Lett. 33 2287

    [18]

    Kudenov M W, Escuti M J, Dereniak E L, Oka K 2011 Appl. Opt. 50 2283

    [19]

    Framcon M, Mallick S 1971 Polarization Interferometers (New York:Wiley) p19

    [20]

    Cai Q S 2016 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[才啟胜2016博士学位论文(合肥:中国科学技术大学)]

    [21]

    Murray J D 1984 Asymptotic Analysis (New York:Springer) pp72-85

    [22]

    Zhang C M, Jian X H 2010 Opt. Lett. 35 366

    [23]

    Du S S, Wang Y M, Tao R 2013 Acta Opt. Sin. 33 0830003(in Chinese)[杜述松, 王咏梅, 陶然2013光学学报33 0830003]

    [24]

    Zhang C M 2010 Interference Imaging Spectroscopy (Beijing:Science Press) p44(in Chinese)[张淳民2010干涉成像光谱技术(北京:科学出版社)第44页]

  • [1]

    Hashimoto M, Kawata S 1992 Appl. Opt. 31 6096

    [2]

    Padgett M J, Harvey A R, Duncan A J, Sibbett W 1994 Appl. Opt. 33 6035

    [3]

    Padgett M J, Harvey A R 1995 Rev. Sci. Instrum. 66 2807

    [4]

    Courtial J, Patterson B A, Harvey A R, Sibbett W, Padgett M J 1996 Appl. Opt. 35 6698

    [5]

    Smith W H, Hammer P D 1996 Appl. Opt. 35 2902

    [6]

    Rafert J B, Sellar R G, Blatt J H 1995 Appl. Opt. 34 7228

    [7]

    Zhang C M, Xiang L B, Zhao B C 2000 Proc. SPIE 4087 957

    [8]

    Zhang C M, Xiang L B, Zhao B C, Yuan X J 2002 Opt. Commun. 203 21

    [9]

    Zhang C M, Zhao B C, Xiang L B, Yang J F 2001 Acta Opt. Sin. 21 192(in Chinese)[张淳民, 赵葆常, 相里斌, 杨建峰2001光学学报21 192]

    [10]

    Dohi T, Suzuki T 1971 Appl. Opt. 10 1137

    [11]

    Roesler F L, Harlander J M 1990 Proc. SPIE 1318 234

    [12]

    Harlander J M, Roesler F L, Cardon J G, Englert C R, Conway R R 2002 Appl. Opt. 41 1343

    [13]

    Harlander J M, Roesler F L, Englert C R, Cardon J G, Conway R R, Brown C M, Wimperis J 2003 Appl. Opt. 42 2829

    [14]

    Cai Q S, Xiang L B, Du S S 2015 Opt. Commun. 355 239

    [15]

    Xiang L B, Cai Q S, Du S S 2015 Opt. Commun. 357 148

    [16]

    Kudenov M W, Miskiewicz M N, Escuti M J, Dereniak E L 2012 Opt. Lett. 37 4413

    [17]

    Oh C, Escuti M J 2008 Opt. Lett. 33 2287

    [18]

    Kudenov M W, Escuti M J, Dereniak E L, Oka K 2011 Appl. Opt. 50 2283

    [19]

    Framcon M, Mallick S 1971 Polarization Interferometers (New York:Wiley) p19

    [20]

    Cai Q S 2016 Ph. D. Dissertation (Hefei:University of Science and Technology of China) (in Chinese)[才啟胜2016博士学位论文(合肥:中国科学技术大学)]

    [21]

    Murray J D 1984 Asymptotic Analysis (New York:Springer) pp72-85

    [22]

    Zhang C M, Jian X H 2010 Opt. Lett. 35 366

    [23]

    Du S S, Wang Y M, Tao R 2013 Acta Opt. Sin. 33 0830003(in Chinese)[杜述松, 王咏梅, 陶然2013光学学报33 0830003]

    [24]

    Zhang C M 2010 Interference Imaging Spectroscopy (Beijing:Science Press) p44(in Chinese)[张淳民2010干涉成像光谱技术(北京:科学出版社)第44页]

  • [1] 孙斌, 赵立臣, 刘杰. 双孤子非线性干涉中的狄拉克磁单极势. 物理学报, 2023, 72(10): 100501. doi: 10.7498/aps.72.20222416
    [2] 高晨栋, 赵明琳, 卢德贺, 窦健泰. 基于双层多指标优化的水下偏振成像技术. 物理学报, 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [3] 孙雪莹, 刘飞, 段景博, 牛耕田, 邵晓鹏. 基于散斑光场偏振共模抑制性的宽谱散射成像技术. 物理学报, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [4] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究. 物理学报, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [5] 才啟胜, 黄旻, 韩炜, 刘怡轩, 路向宁. 大孔径空间外差干涉光谱成像技术多谱段成像仿真. 物理学报, 2018, 67(23): 234205. doi: 10.7498/aps.67.20180943
    [6] 吕浩, 尤凯, 兰燕燕, 高冬, 赵秋玲, 王霞. 非对称光束干涉制备二维微纳光子结构研究. 物理学报, 2017, 66(21): 217801. doi: 10.7498/aps.66.217801
    [7] 李建欣, 柏财勋, 刘勤, 沈燕, 徐文辉, 许逸轩. 新型干涉高光谱成像系统的光束剪切特性分析. 物理学报, 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [8] 郑东晖, 李金鹏, 陈磊, 朱文华, 韩志刚, 乌兰图雅, 郭仁慧. 空域移相偏振点衍射波前检测技术. 物理学报, 2016, 65(11): 114203. doi: 10.7498/aps.65.114203
    [9] 李克武, 王志斌, 杨常青, 张瑞, 王耀利, 宋雁鹏. 基于声光滤光和液晶相位调谐的高光谱全偏振成像新技术. 物理学报, 2015, 64(14): 140702. doi: 10.7498/aps.64.140702
    [10] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪Ⅱ.光学设计与分析. 物理学报, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [11] 穆廷魁, 张淳民, 李祺伟, 魏宇童, 陈清颖, 贾辰凌. 差分偏振干涉成像光谱仪I.概念原理与操作. 物理学报, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [12] 何文奇, 彭翔, 孟祥锋, 刘晓利. 一种基于双光束干涉的分级身份认证方法. 物理学报, 2013, 62(6): 064205. doi: 10.7498/aps.62.064205
    [13] 丁世敬, 黄刘宏, 李跃波, 薛凡喜. 基于材料反射率谐振特性测试电磁参数的自由空间法. 物理学报, 2012, 61(22): 220601. doi: 10.7498/aps.61.220601
    [14] 李阳月, 陈子阳, 刘辉, 蒲继雄. 涡旋光束的产生与干涉. 物理学报, 2010, 59(3): 1740-1748. doi: 10.7498/aps.59.1740
    [15] 赵建领, 吴令安. 基于偏振叠加和干涉两种方法的可控光脉冲延时器. 物理学报, 2010, 59(5): 3260-3263. doi: 10.7498/aps.59.3260
    [16] 宋洪胜, 程传福, 滕树云, 刘曼, 刘桂媛, 张宁玉. 参考光干涉提取复振幅的散斑统计函数的实验研究. 物理学报, 2009, 58(11): 7654-7661. doi: 10.7498/aps.58.7654
    [17] 徐志君, 李鹏华. 玻色凝聚原子云的二次干涉及其放大效应. 物理学报, 2007, 56(10): 5607-5612. doi: 10.7498/aps.56.5607
    [18] 徐志君, 王冬梅, 李 珍. 一维光晶格中玻色凝聚气体的干涉. 物理学报, 2007, 56(6): 3076-3082. doi: 10.7498/aps.56.3076
    [19] 姚志欣, 钟建伟, 毛邦宁, 陈 钢, 潘佰良. 双孔干涉效应的量子描述. 物理学报, 2007, 56(6): 3185-3191. doi: 10.7498/aps.56.3185
    [20] 任国斌, 王 智, 简水生, 娄淑琴. 双芯光子晶体光纤中的模式干涉. 物理学报, 2004, 53(8): 0-0. doi: 10.7498/aps.53.0
计量
  • 文章访问数:  5267
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-15
  • 修回日期:  2017-05-04
  • 刊出日期:  2017-08-05

/

返回文章
返回